225 research outputs found

    Resting Potential–dependent Regulation of the Voltage Sensitivity of Sodium Channel Gating in Rat Skeletal Muscle In Vivo

    Get PDF
    Normal muscle has a resting potential of −85 mV, but in a number of situations there is depolarization of the resting potential that alters excitability. To better understand the effect of resting potential on muscle excitability we attempted to accurately simulate excitability at both normal and depolarized resting potentials. To accurately simulate excitability we found that it was necessary to include a resting potential–dependent shift in the voltage dependence of sodium channel activation and fast inactivation. We recorded sodium currents from muscle fibers in vivo and found that prolonged changes in holding potential cause shifts in the voltage dependence of both activation and fast inactivation of sodium currents. We also found that altering the amplitude of the prepulse or test pulse produced differences in the voltage dependence of activation and inactivation respectively. Since only the Nav1.4 sodium channel isoform is present in significant quantity in adult skeletal muscle, this suggests that either there are multiple states of Nav1.4 that differ in their voltage dependence of gating or there is a distribution in the voltage dependence of gating of Nav1.4. Taken together, our data suggest that changes in resting potential toward more positive potentials favor states of Nav1.4 with depolarized voltage dependence of gating and thus shift voltage dependence of the sodium current. We propose that resting potential–induced shifts in the voltage dependence of sodium channel gating are essential to properly regulate muscle excitability in vivo

    Nerve Terminal Degeneration Is Independent of Muscle Fiber Genotype in SOD1G93A Mice

    Get PDF
    Background: Motor neuron degeneration in SOD1 G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers. Methodology/Principal Findings: Hindlimb muscles were transplanted between wild-type and SOD1 G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1 G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1 G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1 G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles. Conclusions/Significance: These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1 G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient

    Protocol for a Multicenter Study

    Get PDF
    Background: In Parkinson’s disease (PD), alpha-synuclein accumulation in cutaneous autonomic pilomotor and sudomotor nerve fibers has been linked to autonomic nervous system disturbances even in the early stages of the disease. This study aims to assess the association between alpha-synuclein-mediated structural autonomic nerve fiber damage and function in PD, elucidate the role of neuropathy progression during the early disease stages, and test reproducibility and external validity of pilomotor function assessment using quantitative pilomotor axon-reflex test and sudomotor function via quantitative direct and indirect test of sudomotor function. Methods/design: A prospective controlled study will be conducted at four study sites in Europe and the USA. Fifty-two male and female patients with idiopathic PD (Hoehn and Yahr 1–2) and 52 age- and sex-matched healthy controls will be recruited. Axon-reflex-mediated pilomotor erection will be induced by iontophoresis of phenylephrine on the dorsal forearm. Silicone impressions of the response will be obtained, scanned, and quantified for pilomotor muscle impressions by number, impression size, and area of axon-reflex spread. Axon-reflex-mediated sweating following acetylcholine iontophoresis will be quantified for number and size of droplets and axon-reflex spread. Sympathetic skin responses, autonomic and motor symptoms will be evaluated. Tests will be performed at baseline, after 2 weeks, 1, 2, and 3 years. Skin biopsies will be obtained at baseline and after 3 years and will be analyzed for nerve fiber density and alpha-synuclein accumulation. Discussion: We anticipate that progression of autonomic nerve dysfunction assessed via pilomotor and sudomotor axon-reflex tests is related to progression of autonomic symptom severity and alpha- synuclein deposition. Potential applications of the techniques include interventional studies evaluating disease-modifying approaches and clinical assessment of autonomic dysfunction in patients with PD. Clinical trail registration: TRN NCT03043768

    Verbal short-term memory deficits in Down syndrome: phonological, semantic, or both?

    Get PDF
    The current study examined the phonological and semantic contributions to the verbal short-term memory (VSTM) deficit in Down syndrome (DS) by experimentally manipulating the phonological and semantic demands of VSTM tasks. The performance of 18 individuals with DS (ages 11–25) and 18 typically developing children (ages 3–10) matched pairwise on receptive vocabulary and gender was compared on four VSTM tasks, two tapping phonological VSTM (phonological similarity, nonword discrimination) and two tapping semantic VSTM (semantic category, semantic proactive interference). Group by condition interactions were found on the two phonological VSTM tasks (suggesting less sensitivity to the phonological qualities of words in DS), but not on the two semantic VSTM tasks. These findings suggest that a phonological weakness contributes to the VSTM deficit in DS. These results are discussed in relation to the DS neuropsychological and neuroanatomical phenotype

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    Get PDF
    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application

    Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants

    Get PDF
    Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian–human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants

    Therapeutic Implications of GIPC1 Silencing in Cancer

    Get PDF
    GIPC1 is a cytoplasmic scaffold protein that interacts with numerous receptor signaling complexes, and emerging evidence suggests that it plays a role in tumorigenesis. GIPC1 is highly expressed in a number of human malignancies, including breast, ovarian, gastric, and pancreatic cancers. Suppression of GIPC1 in human pancreatic cancer cells inhibits in vivo tumor growth in immunodeficient mice. To better understand GIPC1 function, we suppressed its expression in human breast and colorectal cancer cell lines and human mammary epithelial cells (HMECs) and assayed both gene expression and cellular phenotype. Suppression of GIPC1 promotes apoptosis in MCF-7, MDA-MD231, SKBR-3, SW480, and SW620 cells and impairs anchorage-independent colony formation of HMECs. These observations indicate GIPC1 plays an essential role in oncogenic transformation, and its expression is necessary for the survival of human breast and colorectal cancer cells. Additionally, a GIPC1 knock-down gene signature was used to interrogate publically available breast and ovarian cancer microarray datasets. This GIPC1 signature statistically correlates with a number of breast and ovarian cancer phenotypes and clinical outcomes, including patient survival. Taken together, these data indicate that GIPC1 inhibition may represent a new target for therapeutic development for the treatment of human cancers
    corecore