9 research outputs found

    High efficiency InGaAs solar cells on Si by InP layer transfer

    Get PDF
    InP/Si substrates were fabricated through wafer bonding and helium-induced exfoliation of InP, and InGaAs solar cells lattice matched to bulk InP were grown on these substrates using metal-organic chemical-vapor deposition. The photovoltaic characteristics of the InGaAs cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epiready InP substrates, thus providing a demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications

    Photocurrent enhancement in In_(0.53)Ga_(0.47)As solar cells grown on InP/SiO_2/Si transferred epitaxial templates

    Get PDF
    InP/Si engineered substrates formed by wafer bonding and layer transfer have the potential to significantly reduce the cost and weight of III-V compound semiconductor solar cells. InP/Si substrates were prepared by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. Following thinning of the transferred InP film to remove surface damage caused by the implantation and exfoliation process, InGaAs solar cells lattice-matched to bulk InP were grown on these substrates using metal-organic chemical vapor deposition. The photovoltaic current-voltage characteristics of the InGaAs cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ~20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO_2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications

    Photocurrent enhancement in In_(0.53)Ga_(0.47)As solar cells grown on InP/SiO_2/Si transferred epitaxial templates

    Get PDF
    InP/Si engineered substrates formed by wafer bonding and layer transfer have the potential to significantly reduce the cost and weight of III-V compound semiconductor solar cells. InP/Si substrates were prepared by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. Following thinning of the transferred InP film to remove surface damage caused by the implantation and exfoliation process, InGaAs solar cells lattice-matched to bulk InP were grown on these substrates using metal-organic chemical vapor deposition. The photovoltaic current-voltage characteristics of the InGaAs cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ~20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO_2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications
    corecore