1,176 research outputs found
Nonoperative treatment of slipped capital femoral epiphysis: a scientific study
Abstract Background Treatment of the Slipped Capital Femoral Epiphysis remains a cause of concern due to the fact that the true knowledge of the etiopathogeny is unknown, as well as one of its major complications: chondrolysis. The conservative treatment remains controversial; it has been overlooked in the studies and subjected to intense criticism. The purpose of this study is to investigate the results of treatment on the hip of patients displaying slipped capital femoral epiphysis, using the plaster cast immobilization method and its link to chondrolysis. Methods The research was performed based on the study of the following variables: symptomatology, and the degree of slipping. A hip spica cast and bilateral short/long leg casts in abduction, internal rotation with anti-rotational bars were used for immobilizing the patient's hip for twelve weeks. Statistical analysis was accomplished by Wilcoxon's marked position test and by the Fisher accuracy test at a 5% level. Results A satisfactory result was obtained in the acute group, 70.5%; 94%; in the chronic group (chronic + acute on chronic). Regarding the degree of the slipping, a satisfactory result was obtained in 90.5% of hips tested with a mild slip; in 76% with moderate slip and 73% in the severe slip. The statistical result revealed that a significant improvement was found for flexion (p = 0.0001), abduction (p = 0.0001), internal rotation (p = 0.0001) and external rotation (p = 0.02). Chondrolysis was present in 11.3% of the hips tested. One case of pseudoarthrosis with aseptic capital necrosis was presented. There was no significant variation between age and chondrolysis (p = 1.00).Significant variation between gender/non-white patients versus chondrolysis (p = 0.031) and (p = 0.037), respectively was verified. No causal association between plaster cast and chondrolysis was observed (p = 0.60). In regard to the symptomatology group and the slip degree versus chondrolysis, the p value was not statistically significant in both analyses, p = 0.61 and p = 0.085 respectively. Conclusions After analyzing the nonoperative treatment of slipped capital femoral epiphysis and chondrolysis, we conclude that employment of the treatment revealed that the method was functional, efficient, valid, and reproducible; it also can be used as an alternative therapeutic procedure regarding to this specific disease.</p
Reprogramming energy metabolism and inducing angiogenesis : co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas
Background: Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior.
Methods: The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters.
Results: Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis.
Conclusions: The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas.CP received a post-doctoral fellowship (SFRH/BPD/69479/2010) and FM-S received a doctoral fellowship (SFRH/BD/87139/2012) from FCT (Portuguese Foundation for Science and Technology). This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER, and also by FAPESP 2008/03232-1
Keratocystic odontogenic tumor overexpresses invadopodia-related proteins, suggesting invadopodia formation
OBJECTIVE: Keratocystic odontogenic tumor (KOT) is an odontogenic neoplasm that shows aggressive clinical behavior and local invasiveness. Invadopodia are actin-rich cellular protrusions exhibiting proteolytic pericellular activity, thereby inducing focal invasion in neoplastic cells and increasing neoplasms aggressiveness. Thus, this study aimed to evaluate immunoexpression of invadopodia-related proteins, cortactin, MT1-MMP, Tks4, and Tks5, in KOT. STUDY DESIGN: Immunohistochemistry of 16 cases of KOT, eight cases of calcifying cystic odontogenic tumor (CCOT), and eight samples of the oral mucosa (OM) was carried out to assess the expression of the above described invadopodia-related proteins in the basal and suprabasal layer. RESULTS: KOT samples showed higher and significant immunoexpression of cortactin, MT1-MMP, TKs4, and TKs5 compared with the CCOT and OM samples. Significant expression of all these proteins was observed in the basal layer compared with the suprabasal layer in KOT. CONCLUSIONS: Overexpression of cortactin, MT1-MMP, TKs4, and TKs5 was observed in KOT compared with samples of CCOT and OM. These proteins were also overexpressed in the basal over the suprabasal layer of KOT samples. Taken together, these results suggest the participation of invadopodia-related proteins on the pathogenesis of this lesion
AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior
Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ 3 (AP2γ 3, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ 3 is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ 3 in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ 3-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ 3 deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and d epressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.We acknowledge the excellent technical expertise of Luís Martins and Andrea
Steiner-Mezzadri. We would also like to acknowledge Magdalena Götz for the
insightful comments on the paper. AMP, PP, ARS, JS, VMS, NDA and JFO received
fellowships from the Portuguese Foundation for Science and Technology (FCT). LP
received fellowship from FCT and her work is funded by FCT (IF/01079/2014) and Bial
Foundation (427/14) projects. This work was cofunded by the Life and Health
Sciences Research Institute (ICVS), and Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through
the European Regional Development Fund (FEDER) (projects NORTE-01-0145-
FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded
by FEDER funds, through the Competitiveness Factors Operational Programme
(COMPETE), and by National funds, through the FCT, under the scope of the project
POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio
Role of monocarboxylate transporters in human cancers : state of the art
Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acidresistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness
Recommended from our members
Missed, not missing: Phylogenomic evidence for the existence of Avian FoxP3
The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals
Blindness influences emotional authenticity perception in voices: Behavioral and ERP evidence
The ability to distinguish spontaneous from volitional emotional expressions is an important social skill. How do blind individuals perceive emotional authenticity? Unlike sighted individuals, they cannot rely on facial and body language cues, relying instead on vocal cues alone. Here, we combined behavioral and ERP measures to investigate authenticity perception in laughter and crying in individuals with early- or late-blindness onset. Early-blind, late-blind, and sighted control participants (n = 17 per group, N = 51) completed authenticity and emotion discrimination tasks while EEG data were recorded. The stimuli consisted of laughs and cries that were either spontaneous or volitional. The ERP analysis focused on the N1, P2, and late positive potential (LPP). Behaviorally, early-blind participants showed intact authenticity perception, but late-blind participants performed worse than controls. There were no group differences in the emotion discrimination task. In brain responses, all groups were sensitive to laughter authenticity at the P2 stage, and to crying authenticity at the early LPP stage. Nevertheless, only early-blind participants were sensitive to crying authenticity at the N1 and middle LPP stages, and to laughter authenticity at the early LPP stage. Furthermore, early-blind and sighted participants were more sensitive than late-blind ones to crying authenticity at the P2 and late LPP stages. Altogether, these findings suggest that early blindness relates to facilitated brain processing of authenticity in voices, both at early sensory and late cognitive-evaluative stages. Late-onset blindness, in contrast, relates to decreased sensitivity to authenticity at behavioral and brain levels
E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner
γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli
Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus
Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan
Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc
CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three
assays were compared for their accuracy in CN estimation in this species. The gold standard method is
droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility.
Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome).
ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance
A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer
Background
In a malignant tumour, cancer cells are embedded in stromal cells, namely cancer-associated fibroblasts (CAFs). These CAFs are now accepted as important players in cancer dynamics, being involved in tumour growth and progression. Although there are various reports on the interaction between tumour and stromal cells, the clinico-pathological significance of this cross-talk is still largely unknown. In this study, we aimed to characterise the expression of key metabolic proteins involved in glucose transport, pyruvate/lactate shuttle system, glycolytic metabolism and fatty acid oxidation in CAFs and tumour cells in different stages of malignant transformation. We further aimed to contextualise the clinico-pathological significance of these protein expression profiles with reference to known prognostic indicators, including biochemical recurrence in pT stage.
Methods
Prostate tissues were obtained from 480 patients with a median age of 64 years following radical prostatectomy with no previous hormonal therapy. Tissues were analysed for the expression of several key metabolism-related proteins in glands and surrounding fibroblasts by immunohistochemistry. Reliable markers of prognosis such as pT stage and biochemical recurrence were assessed for each case.
Results
We observed that prostate cancer cells did not rely mainly on glycolytic metabolism, while there was a high expression of MCT4 and CAIX - in CAFs. This corroborates the hypothesis of the "Reverse Warburg effect" in prostate cancer, in which fibroblasts are under oxidative stress and express CAIX, an established hypoxia marker. We found that alterations in the expression of metabolism-related proteins were already evident in the early stages of malignant transformation, suggesting the continuing alteration of CAFs from an early stage. Additionally, and for the first time, we show that cases showing high MCT4 expression in CAFs with concomitant strong MCT1 expression in prostate cancer (PCa) cells are associated with poor clinical outcome, namely pT3 stage of the tumour.
Conclusions
In summary, this work demonstrates for the first time the clinico-pathological significance of the lactate shuttle in prostate cancer. It also suggests that other alterations in CAFs may be useful prognostic factors, and further supports the use of MCT1/MCT4 as targets for PCa therapy.NPG received a fellowship from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009. This work was supported by the FCT grant ref. PTDC/SAUMET/113415/2009, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER. JA was supported by a Boehringer Ingelheim Fonds fellowship
- …
