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14 Monocarboxylate transporter family

15 Monocarboxylic acids play a major role in cellular metabo-
16 lism, with lactate having a key function (Halestrap & Price
17 1999). Transport of monocarboxylates through the plasma

18membrane was originally thought to be via non-ionic diffu-
19sion of the free acid, however, subsequent demonstration
20that lactate and pyruvate transport into human erythrocytes
21could be strongly inhibited after treatment with some chem-
22icals (Halestrap & Denton 1974), a specific monocarboxy-
23late transport mechanism was recognized.
24The monocarboxylate transporter (MCT) family is pres-
25ently composed by 14 members, and is encoded by the
26SLC16 gene family (Halestrap & Meredith 2004), which is
27conserved among species, including rat, mouse and chicken.

28Functional and phylogenetic relationship of MCTs

29According to the Transport Classification Database (www.
30tcdb.org), MCTs are members of the Major Facilitator
31Superfamily (Saier et al. 2009), belonging to the TC# 2.
32A.1.13, the Monocarboxylate Porter (MCP) family. By shar-
33ing a high level of conservative amino acid sequences, the
34topological prediction of MCTs shows 12 transmembrane
35helices (TMs), an intracellular N- and C-terminus and a
36large cytosolic loop between TMs 6 and 7, with the most
37conserved regions belonging to the TMs domains, and the
38most variable ones matching the loops and the C-terminus
39(Poole et al. 1996).
40The 14 human MCT homologue members are assigned as
41the solute carrier (SLC16A) gene series by the Human
42Genome Organization (HUGO) Nomenclature Committee
43Database (www.genenames.org). As shown in Fig. 1, the
44phylogenetic analysis provides valuable information regard-
45ing the functional clustering of the human MCT family. The
46differences in amino acid sequence reflect an evolutionary
47divergence associated with their functional role, since
48MCT1-4, known to mediate the proton-linked transport of
49metabolic monocarboxylic acids, appear associated in the
50same cluster. This cluster is further sub-divided into two
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51 shorter branches, the MCT1-2 and MCT3-4, which correlate
52 with their range of substrate specificity and affinities found
53 for the mammalian (human, mouse and rat) transporter
54 isoforms (Table 1).

55MCT1 has a broader distribution and transports a wider
56range of substrates when compared to other family mem-
57bers. Its kinetic parameters have been studied for the mouse
58isoform in tumor cells (Carpenter et al. 1996) and for the rat

Fig. 1 Q3Human MCT family members’ phylogram, based on amino
acid sequence. Boxes limited by dots represent three main clusters. In
the doted-dashed box are the thyroid hormone (MCT8) and aromatic
amino acids (MCT10) transporters. Solid grey box represent the
proton-linked transported cluster (MCT1-4). The amino acid sequences

were analyzed using CLUSTALW and tree plotting was performed
using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/). MCT1-14 UniProt
accession numbers: P53985; O60669; O95907; O15427; O15374;
O15375; O15403; P36021; Q7RTY1; Q8TF71; Q8NCK7; Q6ZSM3;
Q7RTY0; Q7RTX9

t1:1 Table 1 Km values (mM) of
mammalian MCT isoforms for
a range of monocarboxylates.
(h) – human; (m) – mouse;
(r) – rat; (*)- tumor cells

(n.d. not determined)

t1:2 MCT1 (Carpenter et al. 1996;
Broer et al. 1998; Cuff et al. 2002;
Kido et al. 2000; Poole et al. 1990)

MCT2 (Broer
et al. 1999)

MCT4 (Dimmer et al. 2000;
Manning Fox et al. 2000)

t1:3 L-Lactate 2.2(r)–4.5(m*) 0.7(r) 28.0(h)–34.0(r)

t1:4 D-Lactate 51.0(r) – 519.0(h)

t1:5 Pyruvate 0.6(r)–1.0(r) 0.08(r) 153.0(h)

t1:6 L-β-hydroxybutyrate 8.1(r)–11.4(m*) n.d. 824.0(h)

t1:7 D-β-hydroxybutyrate 8.1(r)–10.1(m*) 1.2(r) 130.0(h)

t1:8 Butyrate 9.1(h*) n.d. n.d.

t1:9 Acetoacetate 5.5(r) 0.8(r) n.d.

t1:10 Benzoate 1.1(h) n.d. n.d.

t1:11 Propionate 1.5(r) n.d. n.d.

t1:12 Acetate 3.7(m*) n.d. n.d.
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59 isoform expressed in Xenopus laevis oocytes (Broer et al.
60 1998). The main function of this transporter has been asso-
61 ciated with the uptake or efflux of monocarboxylates
62 through the plasma membrane, according to cell metabolic
63 needs and behaving as a high affinity transporter for L-
64 lactate, but not for D-lactate, as well as for pyruvate, ace-
65 tate, propionate, D,L-β-hydroxybutyrate and acetoacetate
66 (Halestrap & Meredith 2004). It has also been implicated
67 in the transport of butyrate and propionate in human colo-
68 nocytes (Cuff et al. 2002). Furthermore, its role in the
69 uptake of benzoate in the human blood–brain barrier, as
70 well as in vitro, using both immortalized and primary cul-
71 tured brain capillary endothelial cells, has also been dem-
72 onstrated (Kido et al. 2000).
73 The MCT2 rat ortholog was characterized by heterolo-
74 gous expression in Xenopus laevis oocytes (Broer et al.
75 1999), displaying a higher affinity for L-lactate, pyruvate,
76 D-β-hydroxybutyrate and acetoacetate than MCT1. When
77 expressed in the same tissue, MCT1 and MCT2 are
78 located in distinct cells as they have been suggested to
79 play different roles in metabolic shuttles (Garcia et al.
80 1995; Jackson et al. 1997).
81 MCT3 was first identified in chicken and displays a
82 tissue-specific expression pattern, being only expressed in
83 retinal pigment epithelium and choroid plexus epithelia,
84 mediating the efflux of metabolic lactate in the retina (Philp
85 et al. 1998; Bergersen et al. 1999). The heterologous ex-
86 pression of chick-MCT3 in yeast revealed a Km of 6 mM
87 for L-lactate (Grollman et al. 2000).
88 The physiological role of the human MCT4 is mostly
89 associated with the export of lactate in cells with high
90 glycolytic rates related to hypoxic energy production
91 (Dimmer et al. 2000). It was characterized by heterolo-
92 gous expression in Xenopus laevis oocytes (Manning
93 Fox et al. 2000), exhibiting the highest Km values
94 (Table 1) for most substrates and inhibitors when com-
95 pared to MCT1 and MCT2.
96 Finally, MCT8 (rat isoform) and MCT10 (mouse iso-
97 form) mediate the transport of thyroid-hormones (Friesema
98 et al. 2003) and aromatic amino acids (Kim et al. 2001)
99 respectively, in a proton and sodium-independent manner.
100 According to Fig. 1, their human orthologs share a closer
101 phylogenetic relationship. For the remaining family mem-
102 bers, few or no information is available about their proper-
103 ties and functional roles.
104 The role of MCTs in cell homeostasis is widely
105 recognized and described in detail in some tissues.
106 However, further work is needed in what concerns their
107 role in tumor biology. Even so, if one looks at the
108 microenvironmental scenario and molecular events
109 occurring in carcinogenesis, it is possible to anticipate
110 an important contribution of MCTs in the progression to
111 malignancy.

112Cancer cell metabolic adaptations

113More than half a century ago, Otto Warburg demonstrated
114that cancer cells rapidly convert the majority of glucose into
115lactate, even in the presence of sufficient oxygen to support
116mitochondrial oxidative phosphorylation (Warburg 1956).
117This phenomenon is presently known as “aerobic glycoly-
118sis” or “Warburg effect”. Although Warburg’s hypothesis
119that impaired mitochondrial metabolism underlies the high
120rates of glycolysis has proven incorrect (Wang et al. 1976;
121Brand 1985; Moreno-Sanchez et al. 2007), the original
122observation of increased glycolysis in tumors has been
123confirmed repeatedly. In fact, this increased glucose uptake
124by cancer cells is the rationale behind the whole-body non-
125invasive 18F-fluorodeoxyglucose positron emission tomog-
126raphy (FdG-PET) technique. This widespread clinical appli-
127cation is used for diagnosis, initial staging, restaging,
128prediction, monitoring of treatment response and surveil-
129lance in a variety of cancers (Jadvar et al. 2009).
130Early carcinogenesis and development of the malignant
131phenotype occur in an avascular environment, and cancer
132cells become dependent on glucose and oxygen diffusion
133through blood vessels and basement membrane to fulfill
134their major metabolic demands (Gatenby & Gillies 2004;
135Gillies & Gatenby 2007). Hence, if early hyperplastic
136lesions develop further than a few cell layers beyond the
137basement membrane, regional development of hypoxia will
138occur, limiting cell growth. This intermittent hypoxia will
139promote selection for cells with anaerobic glycolysis consti-
140tutively up-regulated, allowing further cell growth (Gatenby
141& Gillies 2004; Gillies & Gatenby 2007; Smallbone et al.
1422007). It is widely known that the major regulator of adapta-
143tion to hypoxic stress is the transcriptional factor HIF-1α,
144which has been widely associated with cancer progression
145(Semenza 1998a,b, 1999, 2000; 2001; Greijer et al. 2005).
146In fact, many enzymes from the glycolytic pathway like
147glucose transporter 1 (GLUT1) (Chen et al. 2001; Baumann
148et al. 2007), lactate dehydrogenase A (LDH-A) (Firth et al.
1491995), among others (Greijer et al. 2005; Hu et al. 2003; Kim
150et al. 2006; Papandreou et al. 2006; Warnecke et al. 2004), are
151HIF-1α targets. Besides contributing to the constitutive gly-
152colytic metabolism, HIF-1α also contributes to the acid-
153resistant phenotype, by up-regulating, at least, two important
154pH regulators, MCT4 (Ullah et al. 2006; de HF et al. 2009)
155and CAIX (Wykoff et al. 2000; Svastova et al. 2004; Chiche et
156al. 2009). In fact, MCT4 will not only be important for the
157acid-resistant phenotype, but also for the hyper-glycolytic
158phenotype, by exporting newly formed lactate, allowing con-
159tinuous conversion of pyruvate to lactate and, therefore, con-
160tinuous aerobic glycolysis.
161The frequency and severity of tumor hypoxia and its
162association with malignant progression make the hypoxia-
163induced metabolic adaptations promising targets for cancer
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164 therapy (Dang & Semenza 1999). Actually, the development
165 of treatments that target tumor metabolism is receiving
166 renewed attention, with several potential drugs targeting
167 metabolic pathways currently in clinical trials (for review
168 see (Porporato et al. 2011)). Importantly, MCT1 is included
169 in this list of metabolic targets for cancer therapy.

170 The biological relevance of lactate transport in cancer

171 As already mentioned, the acid-resistant phenotype is an
172 essential condition for cancer cell survival. Hence, different
173 pH regulating systems are present in the plasma membrane
174 of cancer cells, including MCTs, the Na+/H+ exchanger 1
175 (NHE1), carbonic anhydrase IX (CAIX) and anion exchanger
176 1 (AE1). Although MCTs are not the major H+ transporters,
177 they perform a double role in the adaptation to hypoxia: export
178 of lactate, essential to the hyper-glycolytic phenotype, and pH
179 regulation, important to the acid-resistant phenotype.
180 Besides its role as tumor acidifier, inducing mutagenesis/
181 clastogenesis, cancer cell invasive behavior, radio- and che-
182 moresistance (Gatenby & Gillies 2004), lactate has other
183 properties which can contribute to the malignant behavior of
184 cancer cells (Fig. 2). T cell activation is dependent on high
185 rates of glycolysis and, therefore, dependent on a rapid
186 efflux of lactate from T cells (Frauwirth & Thompson
187 2004). However, if the extracellular concentration of lactate
188 is high, lactate efflux from T cells will be inhibited. This is
189 the case of the tumor micromilieu and, as a consequence, T
190 cell metabolism and function will be disturbed, decreasing
191 the immune response against tumor cells (Fischer et al.
192 2007). Also, evidence shows that both lactate and pyruvate
193 regulate hypoxia-inducible gene expression, independently
194 from hypoxia, by stimulating the accumulation of HIF-1α
195 (Lu et al. 2002). This indicates that, lactate, per se, stimulates
196 the hyper-glycolytic phenotype, providing a positive feed-
197 back. Moreover, exogenous lactate was demonstrated to in-
198 crease cellular motility (Walenta et al. 2002), vascular endo-
199 thelial growth factor (VEGF), the major angiogenic factor
200 (Spector et al. 2001; Kumar et al. 2007; Hunt et al. 2007), as
201 well as hyaluronan and its receptor CD44, which are mole-
202 cules involved in the process of cancer invasion and metasti-
203 zation (Stern et al. 2002; Rudrabhatla et al. 2006). Altogether,
204 this evidence shows the various biological activities of lactate
205 that can enhance the malignant phenotype of tumor cells,
206 contributing to the association of high tumor lactate concen-
207 trations with incidence of metastases (Schwickert et al. 1995;
208 Walenta et al. 1997; Walenta et al. 2000; Brizel et al. 2001),
209 tumor recurrence, patient survival (Walenta et al. 2000; Brizel
210 et al. 2001) and radioresistance (Quennet et al. 2006). As a
211 result, MCTs, as the transporters responsible for lactate efflux
212 from cancer cells, will be involved in the lactate-induced
213 malignant behavior of cancer cells.

214Besides being an end-product of different metabolic path-
215ways, lactate may also be a substrate for oxidative phos-
216phorylation and, as described in skeletal muscle and brain
217(Juel 1997; Pellerin et al. 1998), a cell-cell lactate shuttle has
218been proposed for cancer cells. Therefore, lactate has been
219recently described as the key metabolic intermediate in a
220metabolic symbiosis between glycolytic and oxidative can-
221cer cells, in which the peripheral and oxygenated oxidative
222cells consume the lactate produced by the central and less
223oxygenated glycolytic cells (Fig. 2) (Sonveaux et al. 2008).
224Although glucose is the major source of lactate in most
225solid tumors, it is important to note that other cancer path-
226ways rather than glycolysis, like glutaminolysis and serinol-
227ysis (Mazurek et al. 2000, 2001a, b; DeBerardinis et al.
2282007), can lead to lactate production. Nevertheless, lactate
229will always be an important metabolic end-product, either
230cancer cells use glycolysis or other energetic pathways for
231energy and biomass production.

232MCT expression in human cancers

233Although less explored than other proteins involved in the
234glycolytic phenotype or even than other pH regulators,
235reports on the role of MCTs in cancer are becoming more
236frequent with years (Table 2).

237Colon

238The first report on MCT expression in human tumor samples
239described a decrease of MCT1 expression (byWestern blot) in
240the colonic transition from normality tomalignancy (Ritzhaupt
241et al. 1998), which was further supported by a larger study
242analyzing MCT1, MCT2, and MCT4 expressions by North-
243ern blot, Western blot and, immunohistochemistry only for
244MCT1, in healthy colon samples, adenomas and carcino-
245mas. MCT1 protein decrease was confirmed, while MCT2
246and MCT4 protein expression was not detected, despite
247mRNA expression of MCT4 (Lambert et al. 2002). However,
248more recent evidence showed a high expression of MCTs in
249colon adenocarcinoma (Pinheiro et al. 2010a), as well as
250significant increase of MCTs expression in cancer cells when
251comparing to normal colonic samples (Koukourakis et al.
2522006; Pinheiro et al. 2008a). These contradictory results are
253probably due to antibody specificity, with special attention to
254the fact that the first immunohistochemical study failed to show
255MCT1 expression in the plasma membrane of cancer cells,
256which is essential for plasma membrane lactate efflux. In
257opposition, one of these recent studies showed a significant
258increase of MCT1 and MCT4 in the plasma membrane of
259colorectal cancer cells accompanied by a significant decrease
260in MCT2 at the plasma membrane. This finding is in accor-
261dance with the dependence of hyperglycolytic cancer cells in
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262 exporting the accumulating lactate through MCT1 and MCT4,
263 but not MCT2. Additionally, MCT2 and MCT4 were strongly
264 expressed in the cytoplasm of cancer cells indicating a possible
265 role of these isoforms in the mitochondrial uptake of pyruvate
266 (Pinheiro et al. 2010a; Koukourakis et al. 2006; Pinheiro et al.
267 2008a). Importantly, analysis of MCT expression in regard to
268 the clinic-pathological parameters showed associations of
269 MCT1 plasma membrane expression with vascular invasion,
270 which could be explained by the role of extracellular lactate
271 and acidity on cancer cell invasion (Pinheiro et al. 2008a),
272 which will need further confirmation. Koukourakis and collab-
273 orators also foundMCT1 expression in tumor-associated fibro-
274 blasts, favoring absorption of the accumulating lactate from the
275 extracellular matrix, to be used as energy source, as well as lack
276 of endothelial MCT1, to avoid lactate absorption and vascular
277 destruction by acidosis. Additionally, MCT2 was strongly
278 expressed in the cytoplasm of cancer cells and tumor-
279 associated fibroblasts, indicating a possible role of MCT2 in
280 the mitochondrial uptake of pyruvate. Finally, MCT4 was
281 weakly expressed in the tumor micromilieu, suggesting a

282minimal role in the metabolic intratumoral communication
283(Koukourakis et al. 2006).

284Central nervous system

285In neoplastic human tissues of the central nervous system,
286the few existing studies point to a possible important role of
287MCT expression, especially MCT1 (Froberg et al. 2001;
288Mathupala et al. 2004; Fang et al. 2006; Li et al. 2009).
289Strong expression of MCT1 was found in ependymomas,
290hemangioblastomas and high grade glial neoplasms (ana-
291plastic astrocytomas and glioblastoma multiforme (GBM)),
292whereas low-grade glial neoplasms (oligodendrogliomas
293and astrocytomas) were either negative or showed weak
294MCT1 expression (Froberg et al. 2001). Additionally, West-
295ern blot analysis in total protein extracts from normal brain
296and primary brain tumors (GBMs) demonstrated that normal
297brain predominantly expressed MCT3, whereas MCT1 and
298MCT2 were the major isoforms present in GBM tumors.
299MCT4 was not detected in any of the tumor tissues

Fig. 2 Overview on the metabolic pathways leading to lactate produc-
tion (continuous lines) and transport across the plasma membrane, as
well as strategies of lactate transport inhibition. Discontinuous arrows
represent lactate uptake and flow inside oxidative cancer cells.

Abbreviations: CHC, α-cyano-4-hydroxycinnamic acid; LDH, lactate
dehydrogenase; MCT, monocarboxylate transporter; PDH, pyruvate
dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1

J Bioenerg Biomembr

JrnlID 10863_ArtID 9428_Proof# 1 - 03/03/2012



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

t2:1 Table 2 Overview on MCT1, MCT2, MCT4 and CD147 expression and prognosis in different tumor types

t2:2 Tumor site MCT1 expression MCT2 expression MCT4 expression CD147 expression*

t2:3 Colon ↓ from normality to
malignancy (Ritzhaupt et al.
1998; Lambert et al. 2002)

Not detected in either normal
or tumor tissues (Lambert et
al. 2002)

Not detected in either normal
or tumor tissues (Lambert et
al. 2002)

(+) in tumor cells; no
significant associations with
MCTs (Pinheiro et al. 2010a)

t2:4 (+) in tumor cells but (−)
normal epithelium
(Koukourakis et al. 2006)

+ in tumor cells cytoplasm, but
not in plasma membrane
(Koukourakis et al. 2006)

Cytoplasm of cancer cells
(Koukourakis et al. 2006)

t2:5 ↑ in tumor cells, compared to
normal epithelium/associated
with vascular invasion
(Pinheiro et al. 2008a)

↑ in cytoplasm expression but
↓ in tumor cells plasma
membrane compared to
normal epithelium (Pinheiro
et al. 2008a)

↑ in tumor cells, compared to
normal epithelium (Pinheiro
et al. 2008a)

t2:6 (+) in tumor cells (Pinheiro et
al. 2010a)

(+) in tumor cells (Pinheiro et
al. 2010a)

(+) in tumor cells (Pinheiro et
al. 2010a)

t2:7 Central nervous
system

Strongest in high grade glial
neoplasms, compared to low
grade glial neoplasms
(Froberg et al. 2001)

↑ in glioblastoma, compared to
normal tissue (Mathupala et
al. 2004)

(-) in glioblastoma (Mathupala
et al. 2004)

t2:8 (+) in glioblastoma and (−) in
normal tissue (Mathupala et
al. 2004)

t2:9 (+) in neuroblastoma/associated
with age >1 year at diagnosis,
stage 4 disease, unfavorable
Shimada histopathology,
DNA diploid index, n-myc
amplification and high-risk
clinical group (COG criteria)
(Fang et al. 2006)

t2:10 Breast ↓ due to gene hypermethylation
(Asada et al. 2003)

(+) in tumor cells and normal
epithelium cytoplasm, but
not in plasma membrane
(Pinheiro et al. 2010a)

Tendency to be ↑ in tumor
cells, compared to normal
epithelium (Pinheiro et al.
2010b)

(+) in tumor cells (Pinheiro et al.
2010a; Pinheiro et al. 2010b)
and normal epithelium
(Pinheiro et al. 2010b);
significantly associated with
MCT1 (Pinheiro et al. 2010b)
and MCT4 (Pinheiro et al.
2010a, b)

t2:11 ↑ in tumor cells, compared to
normal epithelium/associated
with basal-like subtype, high
histological grade, estrogen
and progesterone receptors,
cytokeratins 5 and 14 and
vimentin (alone or co-
expressed with CD147)
(Pinheiro et al. 2010b)

↑ in tumor cells, compared to
normal epithelium (Pinheiro
et al. 2010a)

t2:12 Lung Cytoplasmic accumulation in
alveolar soft-part sarcoma
(Ladanyi et al. 2002)

(+) in tumor cells but (−)
normal epithelium
(Koukourakis et al. 2007)

(+) in tumor cells but (−)
normal epithelium
(Koukourakis et al. 2007)

(+) in tumor cells; tendency to
be associated with MCT1 and
significantly associated with
MCT4 (Pinheiro et al. 2010a)

t2:13 (+) in tumor cells but (−)
normal epithelium
(Koukourakis et al. 2007)

(+) in tumor cells and normal
epithelium cytoplasm, but
not in plasma membrane
(Pinheiro et al. 2010a)

↓ in tumor cells, compared to
normal epithelium (Pinheiro
et al. 2010a)

t2:14 (+) in tumor cells and normal
epithelium (Pinheiro et al.
2010a)

t2:15 Gynecologic
tract

↑ from preinvasive to invasive
cervical cancer/associated
with metastases in AC (when
co-expressed with CD147)
(Pinheiro et al. 2008b)

No progressive change from
preinvasive to invasive
cervical cancer/↑ ASC
(Pinheiro et al. 2008b)

↑ from preinvasive to invasive
cervical cancer/↑ AC
(Pinheiro et al. 2008b)

↑ from preinvasive to invasive
cervical cancer; significant
association with MCT1 and
MCT4 but not MCT2
(Pinheiro et al. 2009a)
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300 (Mathupala et al. 2004). A more recent study on the sym-
301 pathetic nervous system tumor neuroblastoma, showed, by
302 mRNA quantification, that MCT1 expression is also high
303 and is associated with age >1 year at diagnosis, stage 4
304 disease, unfavorable Shimada histopathology, DNA diploid
305 index, n-myc amplification and high-risk clinical group
306 (Children’s Oncology Group criteria) (Fang et al. 2006).
307 Finally, expression analysis revealed that SLC16A1 tran-
308 script, encoding for MCT1, was elevated in 90 % of the
309 medulloblastomas analyzed (Li et al. 2009).

310 Breast

311 Evidence for MCT down-regulation was not only observed
312 in colon carcinoma (Ritzhaupt et al. 1998; Lambert et al.
313 2002). In fact, silencing of SLC16A1 by gene promoter
314 hypermethylation was suggested in 4 of 20 breast cases
315 (20 %), however, the resultant decrease of mRNA and
316 protein were not demonstrated (Asada et al. 2003). In fact,
317 results from our group showed a significant increase of
318 MCT1 cytoplasmic and plasma membrane expression in

319breast carcinoma, when comparing to normal breast epithe-
320lium (Pinheiro et al. 2010a, b). MCT2 and MCT4 were also
321evaluated, however, while MCT2 was only present in the
322cytoplasm in a similar frequency in normal and tumor sam-
323ples, MCT4 only showed a significant increase in tumor
324samples for cytoplasm expression (Pinheiro et al. 2010a),
325with no differences in plasma membrane expression (Pinheiro
326et al. 2010a, b). Importantly, MCT1, alone or in co-expression
327with CD147, was associated with basal-like subtype (a more
328aggressive breast cancer group) and other poor prognostic
329variables, including tumor high grade, pointing at an impor-
330tant role of MCT1/CD147 in breast carcinoma aggressiveness
331(Pinheiro et al. 2010b).

332Lung

333The literature is also controversial in lung cancer. In a first
334study by Koukourakis and collaborators, no expression of
335MCTs in normal lung was found, while expression of MCT1
336was found in all tumors examined and both MCT2 and
337MCT4 were also expressed in cancer cells. This study also

t2:17 Table 2 (continued)

Tumor site MCT1 expression MCT2 expression MCT4 expression CD147 expression*

t2:16 (+) in ovarian tumor cells
(Pinheiro et al. 2010a; Chen
et al. 2010), but (−) in normal
and benign epithelium (Chen
et al. 2010)/associated with
low grade, high FIGO stage,
residual tumor, lack of tumor
relapse and presence of
ascites (Chen et al. 2010)

(+) in ovarian tumor cells
cytoplasm, but not in plasma
membrane (Pinheiro et al.
2010a)

(+) in ovarian tumor cells
(Pinheiro et al. 2010a; Chen
et al. 2010), but (−) in
normal and benign
epithelium (Chen et al.
2010)/associated with high
grade, high FIGO stage,
residual tumor, tumor
relapse and presence of
ascites (Chen et al. 2010)

(+) in ovarian tumor cells
(Pinheiro et al. 2010a; Chen
et al. 2010), but (−) in normal
and benign epithelium (Chen
et al. 2010); tendency to be
associated with MCT1
(Pinheiro et al. 2010a),
significantly associated with
MCT1 and MCT4 (Chen et
al. 2010)

t2:17 Prostate (+) in tumor cells but (−)
normal epithelium and PIN
lesions/associated with high
pretreatment PSA, high
Gleason score, high
pathological grade and nodal
involvement (Hao et al. 2010)

↑ in tumor cells, compared
to normal epithelium
(Pertega-Gomes et al. 2011)

(+) in tumor cells but (−)
normal epithelium and PIN
lesions/associated with high
pretreatment PSA, high
Gleason score, high
pathological grade and nodal
involvement (Hao et al. 2010)

(+) in tumor cells but (−)
normal epithelium and PIN
lesions; co-localization with
MCT1 and MCT4 (Hao et al.
2010)

t2:18 ↓ in tumor cells, compared to
normal epithelium/associated
with high PSA, absence of
perineural invasion and
presence of biochemical
recurrence (Pertega-Gomes
et al. 2011)

↑ in tumor cells, compared to
normal epithelium/high PSA
levels, advanced tumor
stage, higher Gleason score,
presence of perineural
invasion, and presence of
biochemical recurrence
(Pertega-Gomes et al. 2011)

(+) in tumor cells and normal
epithelium; significantly
associated with MCT1 and
MCT4, but not MCT2
(Pertega-Gomes et al. 2011)

t2:19 Gastric (+) with no change along
progression/associated with
advanced gastric cancer,
Lauren’s intestinal type,
stage III+IV and lymph-
node metastases when
(co-expressed with CD147)
(Pinheiro et al. 2009b)

↓ from normal tissue, to primary
tumor, to lymph-node
metastases/associated with
early gastric cancer and
Lauren’s intestinal type
(Pinheiro et al. 2009b)

(+) with no change along
progression; significantly
associated with MCT1 and
MCT4 (Pinheiro et al. 2009b)
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338 analyzed the possible metabolic cooperation between lung
339 cancer cells and tumor-associated stroma, however, tumor-
340 associated stroma expressed MCTs weakly (Koukourakis et
341 al. 2007). In opposition, a recent study by our group showed
342 that normal lung presents a high frequency ofMCTexpression
343 and, in fact, MCT4 is less expressed in tumor samples than in
344 normal epithelium. However, as this last study was performed
345 in a small number of cases, further work is needed to confirm
346 these results (Pinheiro et al. 2010a). MCT1, in association
347 with its chaperone CD147, was also described in the cyto-
348 plasm of alveolar soft part sarcoma (Ladanyi et al. 2002).

349 Gynecologic tract

350 MCT expression has also been described in some gyneco-
351 logical tumors like cervical and ovarian cancer (Pinheiro et
352 al. 2010a, b; Chen et al. 2010). In cervical cancer, a signif-
353 icant increase in overall and plasma membrane expression
354 of MCT1 and MCT4 was observed from pre-invasive to
355 invasive squamous lesions and from normal glandular epi-
356 thelium to adenocarcinomas. For MCT2, the significant
357 alterations in the expression along the progression to the
358 invasive phenotype did not follow a clear increase/decrease
359 pattern. Also, MCT2 was more frequently observed in squa-
360 mous cell carcinomas, while MCT4 was more frequently
361 observed in adenocarcinomas. Importantly, high risk HPV-
362 positive pre-invasive cases expressed more MCT1 and
363 MCT4 than HPV negative pre-invasive cases, and also
364 presented more MCT1 in plasma membrane (Pinheiro et
365 al. 2008b). Additionally, CD147 was more frequently
366 expressed in MCT1 and MCT4 positive cases and co-
367 expression of MCT1 and CD147 was significantly associated
368 with lymph-node metastasis in adenocarcinomas (Pinheiro et
369 al. 2009a). In ovarian cancer, staining forMCT1 andMCT4 as
370 well as their chaperone CD147 was not found in normal
371 ovarian tissues and benign ovarian tissues, while around
372 80 % of epithelial ovarian primary and metastatic tumors
373 showed expression of these proteins. MCT1 was significantly
374 associated with low grade tumors, high FIGO stage, presence
375 of residual tumor, lack of relapse and presence of ascites;
376 MCT4 was significantly associated with high grade tumors,
377 high FIGO stage, presence of residual tumor, relapse and
378 presence of ascites. Importantly, MCT expression was associ-
379 ated with the expression of the multidrug resistance markers
380 MDR1 andMRP2 (Chen et al. 2010). Our group also reported
381 expression of MCT1, MCT2 and MCT4 in ovarian carcino-
382 ma, but with a lower frequency for MCT4 (around 45 %) and
383 around 95 % for MCT2 (Pinheiro et al. 2010a).

384 Prostate

385 Association of MCTs with MDR1 was also described in
386 prostate cancer (Hao et al. 2010). In this study, MCT1 and

387MCT4 were found to be expressed in around 90 % of
388prostate cancer cases, with 20 % of positive cases showing
389a weak immunostaining, while no expression was found in
390normal prostate tissues, prostate intraepithelial lesions or in
391non-tumor regions adjacent to primary prostate cancer tis-
392sues. Importantly MCT1 and MCT4 expressions were asso-
393ciated with high pretreatment PSA levels, high Gleason
394score, high pathological stage, and nodal involvement
395(Hao et al. 2010). In another study evaluating the expression
396of MCTs in prostate cancer (Pertega-Gomes et al. 2011),
397MCT1 was expressed in all normal samples and significantly
398less frequently expressed in tumor samples, being accom-
399panied by its chaperone CD147. Conversely, MCT2 and
400MCT4 were significantly more frequently expressed in the
401cytoplasm of tumor cells when compared to normal tissue.
402All MCT isoforms and CD147 were expressed, at different
403frequencies, in PIN lesions. In accordance with some of the
404findings from the first study (Hao et al. 2010), MCT1
405expression was associated with higher PSA levels, absence
406of perineural invasion, and presence of biochemical recur-
407rence, while MCT4 expression was associated higher PSA
408levels, advanced tumor stage, higher Gleason score, pres-
409ence of perineural invasion, and presence of biochemical
410recurrence (Pertega-Gomes et al. 2011). Further studies are
411warranted to better elucidate the expression pattern of MCTs
412in prostate tissues.

413Stomach

414In contrast to what was found in the previous types of
415tumors, neither MCT1 nor MCT4 were found to be up-
416regulated in gastric adenocarcinomas (Pinheiro et al.
4172009b). Actually, MCT4 expression was more frequently
418observed in normal gastric mucosa than in gastric cancer
419cells and even less frequently observed in lymph-node me-
420tastasis, indicating a progressive loss of this MCT isoform
421with disease progression. Also, MCT4 expression was as-
422sociated with Lauren’s classification of intestinal-type car-
423cinoma. MCT1 was similarly expressed in normal gastric
424mucosa, primary tumors and lymph-node metastasis, being
425present in the majority of samples (around 80 %). These
426findings may indicate that MCT1 has a major contribution
427in gastric homeostasis, which is maintained along carcino-
428genesis (Pinheiro et al. 2009b).
429Overall, the data available in the literature support the
430hypothesis of a major role of MCTs in the emergence of the
431hyper-glycolytic and acid-resistant phenotypes, as adapta-
432tions to the hypoxic microenvironment. The up-regulation
433of MCTs in the plasma membrane of different type of
434tumors is an adaptive mechanism to allow continuous high
435glycolytic rates, by exporting the accumulating end-product,
436lactate, as well as to counteract acid-induced apoptosis or
437necrosis. However, this may not be the case for all tumor
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438 types, hence, further studies characterizing MCT expression
439 in other tumors are warranted.

440 MCTs as therapeutic targets in cancer

441 Considering the major role of MCTs in cancer metabolic
442 adaptations, MCT inhibition will have a direct effect on cell
443 pH regulation, therefore having an important effect on can-
444 cer cell viability. Also, MCTs have a crucial role as gate-
445 keepers of the metabolic symbiosis between cancer cells
446 (Sonveaux et al. 2008), so, targeting these transporters will
447 “shut-down” the advantageous symbiosis, having an impor-
448 tant impact on tumor homeostasis. Finally, taking into ac-
449 count the contribution of lactate to the malignant phenotype,
450 together with the up-regulation of MCT in some tumors,
451 MCT inhibition may be a useful therapeutic approach in
452 cancer. This will then counteract the effects of lactate and,
453 therefore, increase the immune response against tumor cells
454 and decrease migration capacity of cells, among others.
455 In fact, it was demonstrated that in vitro MCT1 inhibition
456 decreases intracellular pH (Sonveaux et al. 2008; Fang et al.
457 2006; Wahl et al. 2002), leads to cell death (Sonveaux et al.
458 2008; Mathupala et al. 2004; Fang et al. 2006; Wahl et al.
459 2002; Colen et al. 2006) and, importantly, enhances cancer
460 cell radiosensitivity (Colen et al. 2006). Additionally, silenc-
461 ing of MCT4 results in decreased cancer cell migration
462 (Gallagher et al. 2007), by mechanisms that also involve
463 interaction of MCT4 with β1-integrin (Gallagher et al.
464 2009). In opposition, another study showed that silencing
465 of MCT1 or MCT4 inhibited cancer cell invasion, but did not
466 influence cell migration (Izumi et al. 2011). Importantly, prom-
467 ising results using in vivo models have also been reported,
468 where administration of α-cyano-4-hydroxycinnamic acid
469 (CHC), a classical non-specific inhibitor of MCT1 (Fig. 1),
470 retarded tumor growth, rendered tumor cells sensitive to
471 radiation (Sonveaux et al. 2008), induced tumor necrosis
472 and decreased tumor invasion (Colen et al. 2011). The
473 importance of MCTs for in vivo tumor growth was
474 confirmed by a more specific approach, where combined
475 silencing of MCT1 and MCT4 or silencing of CD147 sig-
476 nificantly reduced glycolytic flux and tumor growth (Le et
477 al. 2011). There are also other MCT inhibitors described
478 (Fig. 1) (Le et al. 2011; Ovens et al. 2010; Wang & Morris
479 2007; Belt et al. 1979; Kobayashi et al. 2006; Ben-Horin et
480 al. 1995; Ben-Yoseph et al. 1998), which are either non-
481 isoform specific (AR-C155858 targets both MCT1 and
482 MCT2 (Ovens et al. 2010)) or target other molecules besides
483 MCTs (e.g., lonidamine primary target is hexokinase II
484 (Floridi et al. 1981)). However, these compounds have been
485 little explored as lactate transport inhibitors in the cancer
486 context (Le et al. 2011; Wang & Morris 2007; Belt et al.
487 1979; Ben-Yoseph et al. 1998).

488MCT regulation by chaperones

489As previously mentioned, functional expression of MCTs is
490regulated by accessory proteins, such as CD147, that are
491involved in trafficking and anchoring of plasma membrane
492proteins.
493Regulation of MCT1 and MCT4, but not MCT2, by
494CD147, was supported by evidence on human tissues
495(Pinheiro et al. 2009a, b,2010a, b), complementing the in
496vitro and some in vivo studies previously described
497(Gallagher et al. 2007; Kirk et al. 2000; Makuc et al.
4982004; Philp et al. 2003; Deora et al. 2005; Wilson et al.
4992005). Indeed, the prognostic value of CD147 appears to be
500associated with its co-expression with MCT1, as observed in
501breast and gastric carcinomas (Pinheiro et al. 2009b, 2010b).
502Therefore, targeting CD147, which will also impair MCT
503activity, appears to be a rational therapeutic approach
504against human cancer, as already described both in vitro
505and in vivo (Schneiderhan et al. 2009; Su et al. 2009; Baba
506et al. 2008). Besides the role of CD147 as chaperone for
507MCT1 and MCT4 plasma membrane trafficking and activ-
508ity, these MCT isoforms also have been implicated in
509CD147 proper membrane expression (Gallagher et al.
5102007; Deora et al. 2005). Thus, the contribution of MCTs
511to the malignant phenotype is not limited to their own
512function as lactate transporters and pH regulators, but may
513also be further enhanced by their role in regulating CD147
514expression. If so, MCTs may also have indirect roles in
515tumor growth and angiogenesis, as well as cancer cell mi-
516gration and invasion (Nabeshima et al. 2006; Yan et al.
5172005; Iacono et al. 2007; Slomiany et al. 2009).
518In vitro studies show that CD44 may also function as a
519chaperone for MCT expression (Slomiany et al. 2009).
520Additionally, parallel analysis of CD44 and MCTs expres-
521sions in human cancer samples, show that CD44 is associ-
522ated with MCT1 in lung cancer (Pinheiro et al. 2010a) and
523both MCT1 and MCT4 in prostate cancer (Hao et al. 2010).
524As a result, MCT expression may also have a role in cell
525growth control, adhesion, migration, invasion, and chemo-
526resistance (Marhaba & Zoller 2004; Toole & Slomiany
5272008a, b), through interaction with CD44.
528Importantly, there is a relevant number of cases with
529MCT plasma membrane expression lacking both CD147
530or CD44 in the plasma membrane co-expression, suggesting
531that a not yet identified chaperone may be involved in MCT
532trafficking to the plasma membrane.

533Conclusion

534Carcinogenesis has been viewed as a progressive process
535described as “somatic evolution” as it requires a sequence of
536genetic changes; however, recent models of carcinogenesis
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537 integrate the neo-Darwinian evolution, stating that phenotypic
538 properties are retained or lost based on their contribution to
539 fitness for survival, with cell-environment interactions. This
540 new concept of carcinogenesis was applied to explain the
541 Warburg phenomenon, i.e., the preference for the glycolytic
542 phenotype, even in the presence of oxygen. Thus, as cancer
543 progression proceeds, mutations in tumor cells increase and
544 traits that are found in invasive cancers, like the hyper-
545 glycolytic and acid-resistant phenotypes, arise as adaptive
546 mechanisms to environmental proliferative constraints, such
547 as hypoxia.
548 Many players have been associated with these cellular
549 adaptations; however, although an important role of lactate
550 transporters could be anticipated in the context of theWarburg
551 effect, the underlying role of MCTs in solid tumors are far
552 from being understood. Thus, additional studies characteriz-
553 ing MCT expression in tumor types not yet analyzed, confir-
554 mation of the results already published as well as additional
555 functional studies are needed to reinforce the contribution of
556 MCTs for cancer maintenance and aggressiveness.
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