8 research outputs found

    Discrete-Time Hybrid Decision Processes: The Discounted Case

    Full text link
    International audienc

    Effects of Larval Density on Plutella xylostella Resistance to Granulosis Virus

    No full text
    It has been reported that some phase-polyphenic insects from high-density conditions are more resistant to pathogens than those from low-density conditions. This phenomenon is termed “density-dependent prophylaxis” (DDP). However, whether non phase-polyphenic insects exhibit DDP has rarely been elucidated. The diamondback moth (DBM), Plutella xylostella, one of the most destructive insect pests affecting cruciferous crops, is non phase-polyphenic. In this study, the resistance of DBM larvae to P. xylostella granulosis virus (Plxy GV) and their immune response to the virus when reared at densities of 1, 2, 5, 10, 15, and 20 larvae per Petri dish were investigated under laboratory conditions. Compared with larvae reared at lower densities, larvae reared at moderate density showed a significantly higher survival rate, but the survival rate significantly decreased with further increases in rearing density. Furthermore, the phenoloxidase, lysozyme and antibacterial activity and total hemocyte count in the hemolymph of the larvae, regardless of whether they were challenged with the virus, from different larval densities corresponded to the observed differences in resistance to Plxy GV. These results demonstrated that P. xylostella larvae exhibited DDP within a certain limited density. This study may help to elucidate the biocontrol effect of different density populations of P. xylostella by granulosis virus and guide improvements in future management strategy

    Limitations of Using IL-17A and IFN-γ-Induced Protein 10 to Detect Bovine Tuberculosis

    No full text
    Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection in cattle that were confirmed positive for infection by nested PCR. Furthermore, the levels of PPD-B- or CE-induced IP-10 and IL-17A protein were lower than IFN-γ in M. bovis-infected cattle. Therefore, IL-17A and IP-10 protein are not suitable biomarkers for bTB. Antigen-induced IP-10 mRNA should be analyzed further for their potential to be used in the diagnosis of bTB

    image_2.JPEG

    No full text
    <p>Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection in cattle that were confirmed positive for infection by nested PCR. Furthermore, the levels of PPD-B- or CE-induced IP-10 and IL-17A protein were lower than IFN-γ in M. bovis-infected cattle. Therefore, IL-17A and IP-10 protein are not suitable biomarkers for bTB. Antigen-induced IP-10 mRNA should be analyzed further for their potential to be used in the diagnosis of bTB.</p
    corecore