3 research outputs found
Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event
The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities
to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and
the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical
patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly
due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we
mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex,
Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and
Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal
range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were
used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals
two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and
Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest
a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly
intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although
these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data
indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by
a less seasonal rainfall regime from the subtropics to the equatorial region.This work was funded by FAPESP research grant 2015/50683-2 to P.E. De Oliveira, VULPES Project, Belmount
Forum