4,516 research outputs found

    The role of feedback in shaping the structure of the interstellar medium

    Get PDF
    We present an analysis of the role of feedback in shaping the neutral hydrogen (H I) content of simulated disc galaxies. For our analysis, we have used two realizations of two separate Milky Way-like (similar to L star) discs - one employing a conservative feedback scheme (McMaster Unbiased Galaxy Survey), the other significantly more energetic [Making Galaxies In a Cosmological Context (MaGICC)]. To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred H I distribution; construct power spectra associated with the underlying structure of the simulated cold interstellar medium, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from The H I Nearby Galaxy Survey (THINGS). Single power-law fits (P proportional to k(gamma)) to the power spectra of the stronger feedback (MaGICC) runs (over spatial scales corresponding to similar to 0.5 to similar to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma similar to -2.5). The weaker feedback (MUGS) runs exhibit shallower power-law slopes (gamma similar to -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e. gamma similar to -1.4 for scales in excess of similar to 2 kpc) and a steeper slope on scales below similar to 1 kpc (gamma similar to -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial H I surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs

    Constraints on large scalar multiplets from perturbative unitarity

    Full text link
    We determine the constraints on the isospin and hypercharge of a scalar electroweak multiplet from partial-wave unitarity of tree-level scattering diagrams. The constraint from SU(2)_L interactions yields T <= 7/2 (i.e., n <= 8) for a complex scalar multiplet and T <= 4 (i.e., n <= 9) for a real scalar multiplet, where n = 2T+1 is the number of isospin states in the multiplet.Comment: 10 pages, 1 figure. v2: refs added, minor additions to text, submitted to PR

    Central Exclusive Di-jet Production at the Tevatron

    Full text link
    We perform a phenomenological analysis of dijet production in double pomeron exchange at the Tevatron. We find that the CDF Run I results do not rule out the presence of an exclusive dijet component, as predicted by Khoze, Martin and Ryskin (KMR). With the high statistics CDF Run II data, we predict that an exclusive component at the level predicted by KMR may be visible, although the observation will depend on accurate modelling of the inclusive double pomeron exchange process. We also compare to the predictions of the DPEMC Monte Carlo, which contains a non-perturbative model for the central exclusive process. We show that the perturbative model of KMR gives different predictions for the di-jet ET dependence in the high di-jet mass fraction region than non-perturbative models.Comment: 17 pages, 15 figure

    Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions

    Get PDF
    Aims. We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in support of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory. Methods. We made use of a suite of L* discs, realised with and without "enhanced" feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z similar to 2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system. Results. The "enhanced" feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively "flat" and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks at [O/Fe] = -0.05 and +0.05 (for stars with [Fe/H] > -1), consistent with our earlier work on dwarf discs. Conclusions. Our results with "enhanced" feedback are inconsistent with our earlier generation of simulations realised with "conservative" feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes
    • …
    corecore