121 research outputs found

    Portable Surface Plasmon Resonance Biosensor for Detection of Nucleic Acids

    Get PDF
    AbstractWe present a portable surface plasmon resonance (SPR) sensor based on spectroscopy of surface plasmons on a special diffractive structure. The sensor combines a microfluidic cartridge incorporating the special diffractive structure functionalized with DNA probes and a compact SPR reader. We apply the sensor to detection of nucleic acids employing two most common immobilization methods: (a) biotinylated probes immobilized using the biotin-streptavidin chemistry and (b) thiolated probes attached directly to the surface of the SPR sensor. It is demonstrated that both these immobilization methods allow detecting short nucleic acids at levels below 100 pM

    Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber

    Get PDF
    Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity

    Visualizing single-cell secretion dynamics with single protein sensitivity

    No full text
    Cellular secretion of proteins into the extracellular environment is an essential mediator of critical biological mechanisms, including cell-to-cell communication, immunological response, targeted delivery, and differentiation. Here, we report a novel methodology that allows for the real-time detection and imaging of single unlabeled proteins that are secreted from individual living cells. This is accomplished via interferometric detection of scattered light (iSCAT) and is demonstrated with Laz388 cells, an Epstein Barr virus (EBV)-transformed B cell line. We find that single Laz388 cells actively secrete IgG antibodies at a rate of the order of 100 molecules per second. Intriguingly, we also find that other proteins and particles spanning ca. 100 kDa-1 MDa are secreted from the Laz388 cells in tandem with IgG antibody release, likely arising from EBV-related viral proteins. The technique is general and, as we show, can also be applied to studying the lysate of a single cell. Our results establish label-free iSCAT imaging as a powerful tool for studying the real-time exchange between cells and their immediate environment with single-protein sensitivity
    corecore