19 research outputs found

    Identification of novel follicular dendritic cell sarcoma markers, FDCSP and SRGN, by whole transcriptome sequencing

    Get PDF
    Follicular dendritic cell (FDC)-sarcoma is a rare neoplasm with morphologic and phenotypic features of FDCs. It shows an extremely heterogeneous morphology, therefore, its diagnosis relys on the phenotype of tumor cells. Aim of the present study was the identification of new specific markers for FDC-sarcoma by whole transcriptome sequencing (WTS). Candidate markers were selected based on gene expression level and biological function. Immunohistochemistry was performed on reactive tonsils, on 22 cases of FDC-sarcomas and 214 control cases including 114 carcinomas, 87 soft tissue tumors, 5 melanomas, 5 thymomas and 3 interdigitating dendritic cell sarcomas. FDC secreted protein (FDCSP) and Serglycin (SRGN) proved to be specific markers of FDC and related tumor. They showed better specificity and sensitivity values than some well known markers used in FDC sarcoma diagnosis (specificity: 98.6%, and 100%, respectively; sensitivity: 72.73% and 68.18%, respectively). In our cohorts CXCL13, CD21, CD35, FDCSP and SRGN were the best markers for FDC-sarcoma diagnosis and could discriminate 21/22 FDC sarcomas from other mesenchymal tumors by linear discriminant analysis. In summary, by WTS we identified two novel FDC markers and by the analysis of a wide cohort of cases and controls we propose an efficient marker panel for the diagnosis of this rare and enigmatic tumor

    T-Cell Lymphomas in South America and Europe

    Get PDF
    Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic), nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies.424

    Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas.

    Get PDF
    Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of non-Hodgkin lymphomas frequently associated with poor prognosis and for which genetic mechanisms of transformation remain incompletely understood. Using RNA sequencing and targeted sequencing, here we identify a recurrent in-frame deletion (VAV1 Δ778-786) generated by a focal deletion-driven alternative splicing mechanism as well as novel VAV1 gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) in PTCL. Mechanistically these genetic lesions result in increased activation of VAV1 catalytic-dependent (MAPK, JNK) and non-catalytic-dependent (nuclear factor of activated T cells, NFAT) VAV1 effector pathways. These results support a driver oncogenic role for VAV1 signaling in the pathogenesis of PTCL

    CD30 expression in neoplastic T cells of follicular T cell lymphoma is a helpful diagnostic tool in the differential diagnosis of Hodgkin lymphoma

    No full text
    Follicular T cell lymphoma is derived from follicular T-helper cells. In many cases, neoplastic T cells form rosettes around Hodgkin\u2013Reed\u2013Sternberg-like cells, which can lead to the misdiagnosis of classical Hodgkin lymphoma. The aim of the present study was to obtain a better understanding of this rosetting phenomenon and to recognize features that are helpful in the differential diagnosis of classical Hodgkin lymphoma. Sixteen mostly elderly follicular T cell lymphoma patients (mean 66 years) were analyzed. Fifteen of the 16 follicular T cell lymphoma cases presented with Hodgkin\u2013Reed\u2013Sternberg-like cells, which were CD20-positive in 27% of the cases and Epstein\u2013Barr virus-infected in nearly all cases. Frequently, the immunophenotype of rosetting neoplastic T cells differed from the bulk neoplastic cells with less numerous T-follicular helper cell markers expressed, suggesting a modulation of T-follicular helper cell marker expression in the neoplastic T cells. In 75% of the cases, variable CD30 expression was encountered in the neoplastic T cells, likely reflecting an activation state in these cells. Hodgkin\u2013Reed\u2013Sternberg-like cells were positive for CCL17, and follicular T cell lymphoma tumor cells expressed its receptor CCR4 at variable intensity, thus potentially explaining the phenomenon of the tumor cells\u2019 rosetting around Hodgkin\u2013Reed\u2013Sternberg-like cells. In summary, this study confirms the presence of Hodgkin\u2013Reed\u2013Sternberg-like cells in a high number of cases of follicular T cell lymphoma, suggesting that Hodgkin\u2013Reed\u2013Sternberg-like cells may contribute to the development of this lymphoma. Hodgkin\u2013Reed\u2013Sternberg-like cells in follicular T cell lymphoma cannot reliably be differentiated from the Hodgkin\u2013Reed\u2013Sternberg cells of classical Hodgkin lymphoma based on their immunophenotype. In contrast, demonstration of a T-follicular helper cell phenotype with CD10 and frequent CD30 expression in the neoplastic T cell population can help to establish the diagnosis of follicular T cell lymphoma, and may even indicate CD30 as a therapeutic target for these patients

    Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma

    No full text
    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity. (Am J Pathol 2010, 177:792-802; DOI: 10.2353/ajpath.2010.091286

    The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies

    No full text
    none14noCurrently, distinguishing between benign and malignant lymphoid proliferations is based on a combination of clinical characteristics, cyto/histomorphology, immunophenotype and the identification of well-defined chromosomal aberrations. However, such diagnoses remain challenging in 10-15% of cases of lymphoproliferative disorders, and clonality assessments are often required to confirm diagnostic suspicions. In recent years, the development of new techniques for clonality detection has allowed researchers to better characterize, classify and monitor hematological neoplasms. In the past, clonality was primarily studied by performing Southern blotting analyses to characterize rearrangements in segments of the IG and TCR genes. Currently, the most commonly used method in the clinical molecular diagnostic laboratory is polymerase chain reaction (PCR), which is an extremely sensitive technique for detecting nucleic acids. This technique is rapid, accurate, specific, and sensitive, and it can be used to analyze small biopsies as well as formalin-fixed paraffin-embedded samples. These advantages make PCR-based approaches the current gold standard for IG/TCR clonality testing. Since the completion of the first human genome sequence, there has been a rapid development of technologies to facilitate high-throughput sequencing of DNA. These techniques have been applied to the deep characterization and classification of various diseases, patient stratification, and the monitoring of minimal residual disease. Furthermore, these novel approaches have the potential to significantly improve the sensitivity and cost of clonality assays and post-treatment monitoring of B- and T-cell malignancies. However, more studies will be required to demonstrate the utility, sensitivity, and benefits of these methods in order to warrant their adoption into clinical practice. In this review, recent developments in clonality testing are examined with an emphasis on highly sensitive systems for improving diagnostic workups and minimal residual disease assessments.noneA. Gazzola; C. Mannu; M. Rossi; M. A. Laginestra; M. R. Sapienza; F. Fuligni; M. Etebari; F. Melle; E. Sabattini; C. Agostinelli; F. Bacci; C. A. Sagramoso Sacchetti; S. A. Pileri; P. P. PiccalugaA. Gazzola; C. Mannu; M. Rossi; M. A. Laginestra; M. R. Sapienza; F. Fuligni; M. Etebari; F. Melle; E. Sabattini; C. Agostinelli; F. Bacci; C. A. Sagramoso Sacchetti; S. A. Pileri; P. P. Piccalug

    Identification of novel follicular dendritic cell sarcoma markers, FDCSP and SRGN, by whole transcriptome sequencing

    No full text
    Follicular dendritic cell (FDC)-sarcoma is a rare neoplasm with morphologic and phenotypic features of FDCs. It shows an extremely heterogeneous morphology, therefore, its diagnosis relys on the phenotype of tumor cells. Aim of the present study was the identification of new specific markers for FDC-sarcoma by whole transcriptome sequencing (WTS). Candidate markers were selected based on gene expression level and biological function. Immunohistochemistry was performed on reactive tonsils, on 22 cases of FDC-sarcomas and 214 control cases including 114 carcinomas, 87 soft tissue tumors, 5 melanomas, 5 thymomas and 3 interdigitating dendritic cell sarcomas. FDC secreted protein (FDCSP) and Serglycin (SRGN) proved to be specific markers of FDC and related tumor. They showed better specificity and sensitivity values than some well known markers used in FDC sarcoma diagnosis (specificity: 98.6%, and 100%, respectively; sensitivity: 72.73% and 68.18%, respectively). In our cohorts CXCL13, CD21, CD35, FDCSP and SRGN were the best markers for FDC-sarcoma diagnosis and could discriminate 21/22 FDC sarcomas from other mesenchymal tumors by linear discriminant analysis. In summary, by WTS we identified two novel FDC markers and by the analysis of a wide cohort of cases and controls we propose an efficient marker panel for the diagnosis of this rare and enigmatic tumor

    Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas

    Get PDF
    Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumors (MTs) with variable clinical, morphologic and phenotypic characteristics. Transcriptome analysis was performed on multiple FDC sarcomas and compared to other MTs, microdissected Castleman FDCs, and normal fibroblasts. Using unsupervised analysis, FDC sarcomas clustered with microdissected FDCs, distinct from other MTs and fibroblasts. The specific endowment of FDC-related gene expression programs in FDC sarcomas emerged by applying a gene signature of differentially expressed genes (n=1,289) between microdissected FDCs and fibroblasts. Supervised analysis comparing FDC sarcomas with microdissected FDCs and other MTs identified 370 and 2,927 differentially expressed transcripts, respectively, and based on pathway enrichment analysis ascribed to signal transduction, chromatin organization, and extracellular matrix organization programs. Since the transcriptome of FDC sarcomas retained similarity with FDCs, the immune landscape of FDC sarcoma was investigated by applying the CIBERSORT algorithm to FDC sarcomas and non-FDC MTs, and demonstrated that FDC sarcomas were enriched in T follicular helper (Tfh) and T regulatory (Treg) cell populations, as confirmed in situ by immunohistochemistry. The enrichment in specific T-cell subsets prompted investigating the mRNA expression of the inhibitory immune receptor PD-1 and its ligands PD-L1 and PD-L2, which were found to be significantly upregulated in FDC sarcomas as compared with other MTs, a finding also confirmed in situ. Here it is demonstrated for the first time the transcriptional relationship of FDC sarcomas with non-malignant FDCs and their distinction from other MTs
    corecore