620 research outputs found

    Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture

    Full text link
    We report on the observation of interspecies Feshbach resonances in an ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field range up to 300 G we find 23 interspecies Feshbach resonances in the lowest spin channel and 2 resonances in a higher channel of the mixture. The extraordinarily rich Feshbach spectrum suggests the importance of different partial waves in both the open and closed channels of the scattering problem along with higher-order coupling mechanisms. Our results provide, on one hand, fundamental experimental input to characterize the Rb-Cs scattering properties and, on the other hand, identify possible starting points for the association of ultracold heteronuclear RbCs molecules.Comment: 7 pages, 3 figures, 1 tabl

    Supersymmetric Charged Clouds in AdS_5

    Full text link
    We consider supersymmetric holographic flows that involve background gauge fields dual to chemical potentials in the boundary field theory. We use a consistent truncation of gauged N=8 supergravity in five dimensions and we give a complete analysis of the supersymmetry conditions for a large family of flows. We examine how the well-known supersymmetric flow between two fixed points is modified by the presence of the chemical potentials and this yields a new, completely smooth, solution that interpolates between two global AdS spaces of different radii and with different values of the chemical potential. We also examine some black-hole-like singular flows and a new non-supersymmetric black hole solution. We comment on the interpretation of our new solutions in terms of giant gravitons and discuss the implications of our work for finding black-hole solutions in AdS geometries.Comment: 31 pages, 6 figures; minor corrections, updated reference

    Experimental Evidence for Efimov Quantum States

    Full text link
    Three interacting particles form a system which is well known for its complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of weakly bound trimer states appearing for three identical bosons with a resonant two-body interaction. Surprisingly, these states even exist in the absence of a corresponding two-body bound state and their precise nature is largely independent of the particular type of the two-body interaction potential. Efimov's scenario has attracted great interest in many areas of physics; an experimental test however has not been achieved. We report the observation of an Efimov resonance in an ultracold thermal gas of cesium atoms. The resonance occurs in the range of large negative two-body scattering lengths and arises from the coupling of three free atoms to an Efimov trimer. We observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied near a Feshbach resonance. This resonance develops into a continuum resonance at non-zero collision energies, and we observe a shift of the resonance position as a function of temperature. We also report on a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point from which to explore the universal properties of resonantly interacting few-body systems.Comment: 8 pages, 4 figures, Proceedings of ICAP-2006 (Innsbruck

    Supergravity Instabilities of Non-Supersymmetric Quantum Critical Points

    Full text link
    Motivated by the recent use of certain consistent truncations of M-theory to study condensed matter physics using holographic techniques, we study the SU(3)-invariant sector of four-dimensional, N=8 gauged supergravity and compute the complete scalar spectrum at each of the five non-trivial critical points. We demonstrate that the smaller SU(4)^- sector is equivalent to a consistent truncation studied recently by various authors and find that the critical point in this sector, which has been proposed as the ground state of a holographic superconductor, is unstable due to a family of scalars that violate the Breitenlohner-Freedman bound. We also derive the origin of this instability in eleven dimensions and comment on the generalization to other embeddings of this critical point which involve arbitrary Sasaki-Einstein seven manifolds. In the spirit of a resurging interest in consistent truncations, we present a formal treatment of the SU(3)-invariant sector as a U(1)xU(1) gauged N=2 supergravity theory coupled to one hypermultiplet.Comment: 46 page

    Constructing Lifshitz solutions from AdS

    Full text link
    Under general assumptions, we show that a gravitational theory in d+1 dimensions admitting an AdS solution can be reduced to a d-dimensional theory containing a Lifshitz solution with dynamical exponent z=2. Working in a d=4, N=2 supergravity setup, we prove that if the AdS background is N=2 supersymmetric, then the Lifshitz geometry preserves 1/4 of the supercharges, and we construct the corresponding Killing spinors. We illustrate these results in examples from supersymmetric consistent truncations of type IIB supergravity, enhancing the class of known 4-dimensional Lifshitz solutions of string theory. As a byproduct, we find a new AdS4 x S1 x T(1,1) solution of type IIB.Comment: 29 pages, no figures; v2 minor corrections, a reference adde

    Holographic Renormalization Group Flows: The View from Ten Dimensions

    Get PDF
    The holographic description of supersymmetric RG flows in supergravity is considered from both the five-dimensional and ten-dimensional perspectives. An N=1* flow of N=4 super-Yang Mills is considered in detail, and the infra-red limit is studied in terms of IIB supergravity in ten dimensions. Depending on the vevs and the direction of approach to the core, the supergravity solution can be interpreted in terms of either 5-branes or 7-branes. Generally, it is shown that it is essential to use the ten-dimensional description in order to study the infra-red asymptotics in supergravity.Comment: Talk presented at the Second Gursey Memmorial Conference; 14 pages; Latex; IOP Macro

    Holographic RG Flows and Universal Structures on the Coulomb Branch of N=2 Supersymmetric Large n Gauge Theory

    Full text link
    We report on our results of D3-brane probing a large class of generalised type IIB supergravity solutions presented very recently in the literature. The structure of the solutions is controlled by a single non-linear differential equation. These solutions correspond to renormalisation group flows from pure N=4 supersymmetric gauge theory to an N=2 gauge theory with a massive adjoint scalar. The gauge group is SU(n) with n large. After presenting the general result, we focus on one of the new solutions, solving for the specific coordinates needed to display the explicit metric on the moduli space. We obtain an appropriately holomorphic result for the coupling. We look for the singular locus, and interestingly, the final result again manifests itself in terms of a square root branch cut on the complex plane, as previously found for a set of solutions for which the details are very different. This, together with the existence of the single simple non-linear differential equation, is further evidence in support of an earlier suggestion that there is a very simple model --perhaps a matrix model with relation to the Calogero-Moser integrable system-- underlying this gauge theory physics.Comment: 14 pages, LaTeX, 1 figur

    Gravity duals to deformed SYM theories and Generalized Complex Geometry

    Full text link
    We analyze the supersymmetry conditions for a class of SU(2) structure backgrounds of Type IIB supergravity, corresponding to a specific ansatz for the supersymmetry parameters. These backgrounds are relevant for the AdS/CFT correspondence since they are suitable to describe mass deformations or beta-deformations of four-dimensional superconformal gauge theories. Using Generalized Complex Geometry we show that these geometries are characterized by a closed nowhere-vanishing vector field and a modified fundamental form which is also closed. The vector field encodes the information about the superpotential and the type of deformation - mass or beta respectively. We also show that the Pilch-Warner solution dual to a mass-deformation of N =4 Super Yang-Mills and the Lunin-Maldacena beta-deformation of the same background fall in our class of solutions.Comment: LaTex, 29 page

    Orbifolds and Flows from Gauged Supergravity

    Get PDF
    We examine orbifolds of the IIB string via gauged supergravity. For the gravity duals of the A_{n-1} quiver gauge theories, we extract the massless degrees of freedom and assemble them into multiplets of N=4 gauged supergravity in five dimensions. We examine the embedding of the gauge group into the isometry group of the scalar manifold, as well as the symmetries of the scalar potential. From this we find that there is a large SU(1,n) symmetry group which relates different RG flows in the dual quiver gauge theory. We find that this symmetry implies an extension of the usual duality between ten-dimensional IIB solutions which involves exchanging geometric moduli with background fluxes.Comment: 37 pages, harvma
    • …
    corecore