550 research outputs found

    Non-dynamic origin of the acoustic attenuation at high frequency in glasses

    Full text link
    The sound attenuation in the THz region is studied down to T=16 K in glassy glycerol by inelastic x-ray scattering. At striking variance with the decrease found below 100 K in the GHz data, the attenuation in the THz range does not show any T dependence. This result i) indicates the presence of two different attenuation mechanisms, active respectively in the high and low frequency limits; ii) demonstrates the non-dynamic origin of the attenuation of THz sound waves, and confirms a similar conclusion obtained in SiO2 glass by molecular dynamics; and iii) supports the low frequency attenuation mechanism proposed by Fabian and Allen (Phys.Rev.Lett. 82, 1478 (1999)).Comment: 3 pages, 5 Figures, To be published in PR

    Elastic consequences of a single plastic event : a step towards the microscopic modeling of the flow of yield stress fluids

    Full text link
    With the eventual aim of describing flowing elasto-plastic materials, we focus on the elementary brick of such a flow, a plastic event, and compute the long-range perturbation it elastically induces in a medium submitted to a global shear strain. We characterize the effect of a nearby wall on this perturbation, and quantify the importance of finite size effects. Although for the sake of simplicity most of our explicit formulae deal with a 2D situation, our statements hold for 3D situations as well.Comment: submitted to EPJ

    A study of the static yield stress in a binary Lennard-Jones glass

    Full text link
    The stress-strain relations and the yield behavior of model glass (a 80:20 binary Lennard-Jones mixture) is studied by means of MD simulations. First, a thorough analysis of the static yield stress is presented via simulations under imposed stress. Furthermore, using steady shear simulations, the effect of physical aging, shear rate and temperature on the stress-strain relation is investigated. In particular, we find that the stress at the yield point (the ``peak''-value of the stress-strain curve) exhibits a logarithmic dependence both on the imposed shear rate and on the ``age'' of the system in qualitative agreement with experiments on amorphous polymers and on metallic glasses. In addition to the very observation of the yield stress which is an important feature seen in experiments on complex systems like pastes, dense colloidal suspensions and foams, further links between our model and soft glassy materials are found. An example are hysteresis loops in the system response to a varying imposed stress. Finally, we measure the static yield stress for our model and study its dependence on temperature. We find that for temperatures far below the mode coupling critical temperature of the model (Tc=0.435Tc = 0.435), \sigmay decreases slowly upon heating followed by a stronger decrease as \Tc is approached. We discuss the reliability of results on the static yield stress and give a criterion for its validity in terms of the time scales relevant to the problem.Comment: 14 pages, 18 figure

    Anomalous acoustic reflection on a sliding interface or a shear band

    Full text link
    We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance is utterly different from that of the static interface. In particular, the system being open, the energy of an in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned between frictional dissipation and gain (of either sign) of coherent acoustic energy. Large values of the friction coefficient favor energy gain, while velocity strengthening tends to suppress it. An interface with infinite elastic contrast (one rigid medium) and V-independent (Coulomb) friction exhibits spontaneous acoustic emission, as already shown by M. Nosonovsky and G.G. Adams (Int. J. Ing. Sci., {\bf 39}, 1257 (2001)). But this pathology is cured by any finite elastic contrast, or by a moderately large V-strengthening of friction. We show that (i) positive gain should be observable for rough-on-flat multicontact interfaces (ii) a sliding shear band in a granular medium should give rise to sizeable reflection, which opens a promising possibility for the detection of shear localization.Comment: 13 pages, 10 figure

    Spatial distribution of psychotic disorders in an urban area of France: an ecological study

    Get PDF
    Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation

    Prognostic value of clinicopathological parameters in head and neck squamous cell carcinoma: a prospective analysis.

    Get PDF
    The prognostic weight of histological and biological factors was compared with that of known clinical prognostic factors in a population of 108 consecutive previously untreated patients with head and neck squamous cell carcinoma. Parameters studied were: tumour vascularisation, mitotic index, histological differentiation, nuclear grade, keratinisation, desmoplasia, growth pattern, inflammation, tumour emboli in peripheral vessels, keratins 6, 13, 19 immunohistochemical expression, cytofluorometric ploidy and S-phase. In multivariate analysis (Cox), only age and nodal status had a significant impact on the overall survival, whereas T stage was the only significant factor associated with locoregional failure. The cumulative incidence of metastases was correlated not only with age, T and N stage, but also with histological differentiation. All the other histological and biological factors studied failed to provide further prognostic information. These findings may help to select patients with high metastatic risk

    Aging dynamics in a colloidal glass of Laponite

    Full text link
    The aging dynamics of colloidal suspensions of Laponite, a synthetic clay, is investigated using dynamic light stattering (DLS) and viscometry after a quench into the glassy phase. DLS allows to follow the diffusion of Laponite particles and reveals that there are two modes of relaxation. The fast mode corresponds to a rapid diffusion of particles within "cages" formed by the neighboring particles. The slow mode corresponds to escape from the cages: its average relaxation time increases exponentially fast with the age of the glass. In addition, the slow mode has a broad distribution of relaxation times, its distribution becoming larger as the system ages. Measuring the concomitant increase of viscosity as the system ages, we can relate the slowing down of the particle dynamics to the viscosity.Comment: 9 pages, 8 Postscript figures, submitted to Phys. Rev.

    In-plane and Out-of-plane Plasma Resonances in Optimally Doped La1.84Sr0.16CuO4

    Full text link
    We addressed the inconsistency between the electron mass anisotropy ratios determined by the far-infrared experiments and DC conductivity measurements. By eliminating possible sources of error and increasing the sensitivity and resolution in the far-infrared reflectivity measurement on the single crystalline and on the polycrystalline La1.84Sr0.16CuO4, we have unambiguously identified that the source of the mass anisotropy problem is in the estimation of the free electron density involved in the charge transport and superconductivity. In this study we found that only 2.8 % of the total doping-induced charge density is itinerant at optimal doping. Our result not only resolves the mass anisotropy puzzle but also points to a novel electronic structure formed by the rest of the electrons that sets the stage for the high temperature superconductivity

    Yield stress, heterogeneities and activated processes in soft glassy materials

    Full text link
    The rheological behavior of soft glassy materials basically results from the interplay between shearing forces and an intrinsic slow dynamics. This competition can be described by a microscopic theory, which can be viewed as a nonequilibrium schematic mode-coupling theory. This statistical mechanics approach to rheology results in a series of detailed theoretical predictions, some of which still awaiting for their experimental verification. We present new, preliminary, results about the description of yield stress, flow heterogeneities and activated processes within this theoretical framework.Comment: Paper presented at "III Workshop on Non Equilibrium Phenomena...", Pisa 22-27 Sep. 200

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ\sigma^\star remains unclear
    corecore