496 research outputs found

    The Metalloprotease Meprin β Is an Alternative β-Secretase of APP

    Get PDF
    The membrane bound metalloprotease meprin β is important for collagen fibril assembly in connective tissue formation and for the detachment of the intestinal mucus layer for proper barrier function. Recent proteomic studies revealed dozens of putative new substrates of meprin β, including the amyloid precursor protein (APP). It was shown that APP is cleaved by meprin β in distinct ways, either at the β-secretase site resulting in increased levels of Aβ peptides, or at the N-terminus releasing 11 kDa, and 20 kDa peptide fragments. The latter event was discussed to be rather neuroprotective, whereas the ectodomain shedding of APP by meprin β reminiscent to BACE-1 is in line with the amyloid hypothesis of Alzheimer's disease, promoting neurodegeneration. The N-terminal 11 kDa and 20 kDa peptide fragments represent physiological cleavage products, since they are found in human brains under different diseased or non-diseased states, whereas these fragments are completely missing in brains of meprin β knock-out animals. Meprin β is not only a sheddase of adhesion molecules, such as APP, but was additionally demonstrated to cleave within the prodomain of ADAM10. Activated ADAM10, the α-secretase of APP, is then able to shed meprin β from the cell surface thereby abolishing the β-secretase activity. All together meprin β seems to be a novel player in APP processing events, even influencing other enzymes involved in APP cleavage

    Nonsteroidal Anti-Inflammatory Drugs and Ectodomain Shedding of the Amyloid Precursor Protein

    Get PDF
    Background: Epidemiological studies have suggested that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). Several mechanisms have been proposed to explain these findings including increased shedding of the soluble ectodomain of the amyloid precursor protein (sAPP), which functions as a neurotrophic and neuroprotective factor in vitro and in vivo. Objective: To clarify whether NSAIDs consistently stimulate sAPP secretion. Methods: 293-EBNA cells with stable overexpression of an APP-alkaline phosphatase fusion protein (APP-AP), SH-SY5Y and PC12 cells or primary telencephalic chicken neurons were treated with ibuprofen or indomethacin. APP shedding was then determined by measuring AP activity in conditioned media, Western blot analysis with antibodies against total sAPP or specific for sAPP-alpha, or in a pulse-chase paradigm. Results: AP activity in conditioned media was not increased after NSAID treatment of 293-EBNA cells whereas it was elevated by phorbol ester. Surprisingly, ibuprofen or indomethacin treatment of SH-SY5Y and PC12 cells expressing endogenous APP did not cause changes in sAPP or sAPP-alpha secretion or downregulation of cellular APP. These findings were further corroborated in primary chicken neuronal cultures. Conclusions: Using various experimental settings, we were unable to confirm sAPP or sAPP-alpha stimulation with the NSAIDs ibuprofen and indomethacin in transfected and nontransfected cells of neuronal and nonneuronal origin. Importantly, these findings seem to rule out chronic sAPP stimulation as an alternative mechanism of NSAID action in AD. Copyright (C) 2008 S. Karger AG, Base

    Folate status and health: challenges and opportunities

    Get PDF
    AbstractEach year approximately 2400 pregnancies develop folic acid-preventable spina bifida and anencephaly in Europe. Currently, 70% of all affected pregnancies are terminated after prenatal diagnosis. The prevalence of neural tube defects (NTDs) has been significantly lowered in more than 70 countries worldwide by applying fortification with folic acid. Periconceptional supplementation of folic acid also reduces the risk of congenital heart diseases, preterm birth, low birth weight, and health problems associated with child mortality and morbidity. All European governments failed to issue folic acid fortification of centrally processed and widely eaten foods in order to prevent NTDs and other unwanted birth outcomes. The estimated average dietary intake of folate in Germany is 200 μg dietary folate equivalents (DFE)/day. More than half of German women of reproductive age do not consume sufficient dietary folate to achieve optimal serum or red blood cell folate concentrations (&gt;18 or 1000 nmol/L, respectively) necessary to prevent spina bifida and anencephaly. To date, targeted supplementation is recommended in Europe, but this approach failed to reduce the rate of NTDs during the last 10 years. Public health centers for prenatal care and fortification with folic acid in Europe are urgently needed. Only such an action will sufficiently improve folate status, prevent at least 50% of the NTD cases, reduce child mortality and morbidity, and alleviate other health problems associated with low folate such as anemia.</jats:p

    Algoritmo para el diagnóstico precoz de la deficiencia de vitamina B12 en ancianos

    Get PDF
    Background: The elderly population is particularly at risk for developing vitamin B12-deficiency. Serum cobalamin does not necessarily reflect a normal B12 status. The determination of methylmalonic acid is not available in all laboratories. Issues of sensitivity for holotranscobalamin and the low specificity of total homocysteine limit their utility. The aim of the present study is to establish a diagnostic algorithm by using a combination of these markers in place of a single measurement. Methods: We compared the diagnostic efficiency of these markers for detection of vitamin B12 deficiency in a population (n = 218) of institutionalized elderly (median age 80 years). Biochemical, haematological and morphological data were used to categorize people with or without vitamin B12 deficiency. Results: In receiver operating curves characteristics for detection on vitamin B12 deficiency using single measurements, serum folate has the greatest area under the curve (0.87) and homocysteine the lowest (0.67). The best specificity was observed for erythrocyte folate and methylmalonic acid (100% for both) but their sensitivity was very low (17% and 53%, respectively). The highest sensitivity was observed for homocysteine (81%) and serum folate (74%). When we combined these markers, starting with serum and erythrocyte folate, followed by holotranscobalamin and ending by methylmalonic acid measurements, the overall sensitivity and specificity of the algorithm were 100% and 90%, respectively. Conclusion: The proposed algorithm, which combines erythrocyte folate, serum folate, holotranscobalamin and methylmalonic acid, but eliminate B12 and tHcy measurements, is a useful alternative for vitamin B12 deficiency screening in an elderly institutionalized cohort.Introducción: Los mayores son una población que presenta un riesgo importante de desarrollar una deficiencia de vitamina B12, pero las concentraciones de cobalamina en suero no reflejan necesariamente un estado abnormal en el estado de B12 . Existen biomarcadores asociados a la vitamina B12: el ácido metilmalónico no está disponible en todos los laboratorios, la holotranscobalamina es poco sensible y la homocisteína presenta una baja especificidad. El objetivo del presente estudio es establecer un algoritmo de diagnóstico mediante el uso de una combinación de estos biomarcadores en lugar de la medición de uno sólo de ellos. Métodos: Se comparó la eficacia diagnóstica de estos marcadores para la detección de deficiencia de vitamina B12 en una población (n = 218) de ancianos institucionalizados (edad media 80 años). Los parámetros bioquímicos, hematológicos y morfológicos fueron utilizados para clasificar a los sujetos con o sin deficiencia de vitamina B12. Resultados: Se establecieron las curvas ROC (Receiver Operating Curves) para determinar la eficacia diagnóstica de cada parámetro, tomado individualmente. El folato sérico tenía la mayor área bajo la curva (0,87) y la homocisteína la más baja (0,67). Se observó que la mejor especificidad la presentaba el folato eritrocitario y el ácido metilmalónico (100% para ambos), pero sus sensibilidades eran muy bajas (17% y 53%, respectivamente). Y se observó que la sensibilidad más alta la presentaba la homocisteína (81%) y el folato sérico (74%), pero en contrapartida una especificidad baja. Cuando se combinaron estos marcadores, iniciando las determinaciones con el folato sérco y eritrocitario, seguido por holotranscobalamina y terminando por las mediciones de ácido metilmalónico, la sensibilidad y especificidad global del algoritmo fueron 100% y 90%, respectivamente. Conclusión: El algoritmo propuesto, que combina la determinación de folato sérico y eritrocitario, holotranscobalamina y ácido metilmalónico, sin necesidad de evaluar la vitamina B12 y la homocisteína, es una alternativa útil para la detección de un estado abnormal del estado de vitamina B12 en una población de ancianos institucionalizados

    APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms

    Get PDF
    The amyloid precursor protein (APP) is part of a larger gene family, which has been found to form homo- or heterotypic complexes with its homologues, whereby the exact molecular mechanism and origin of dimer formation remains elusive. In order to assess the cellular location of dimerization, we have generated a cell culture model system in CHO-K1 cells, stably expressing human APP, harboring dilysine-based organelle sorting motifs [KKAA-endoplasmic reticulum (ER); KKFF-Golgi], accomplishing retention within early secretory compartments. We show that APP exists as disulfide-bonded dimers upon ER retention after it was isolated from cells, and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. In contrast, strong denaturing and reducing conditions, or deletion of the E1 domain, resulted in the disappearance of those dimers. Thus we provide first evidence that a fraction of APP can associate via intermolecular disulfide bonds, likely generated between cysteines located in the extracellular E1 domain. We particularly visualize APP dimerization itself and identified the ER as subcellular compartment of its origin using biochemical or split GFP approaches. Interestingly, we also found that minor amounts of SDS-resistant APP dimers were located to the cell surface, revealing that once generated in the oxidative environment of the ER, dimers remained stably associated during transport. In addition, we show that APP isoforms encompassing the Kunitz-type protease inhibitor (KPI) domain exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-mediated cell aggregation of Drosophila Schneider S2-cells was isoform independent. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER

    Pharmacokinetics of Sodium and Calcium Salts of (6S)-5-Methyltetrahydrofolic Acid Compared to Folic Acid and Indirect Comparison of the Two Salts

    Get PDF
    (6S)-5-Methyltetrahydrofolic acid ((6S)-5-Methyl-THF) salts and folic acid may differ in their abilities to raise plasma (6S)-5-Methyl-THF levels. We compared the area under the curve (AUC), Cmax, and Tmax of plasma (6S)-5-Methyl-THF after intakes of (6S)-5-Methyl-THF-Na salt (Arcofolin®) and folic acid. Moreover, we compared the AUCs after intakes of (6S)-5-Methyl-THF-Na and the calcium salt, (6S)-5-Methyl-THF-Ca, that were tested against folic acid in two independent studies. The study was randomized, double blind, and cross over. Twenty-four adults (12 men and 12 women) received a single oral dose of 436 µg (6S)-5-Methyl-THF-Na and an equimolar dose of folic acid (400 µg) on two kinetic days with two weeks washout period in between. The plasma concentrations of (6S)-5-Methyl-THF were measured at 9 time points between 0 and 8 h. We found that the AUC0–8 h of plasma (6S)-5-Methyl-THF (mean (SD) = 126.0 (33.6) vs. 56.0 (25.3) nmol/L*h) and Cmax (36.8 (10.8) vs. 11.1 (4.1) nmol/L) were higher after administration of (6S)-5-Methyl-THF-Na than after the administration of folic acid (p < 0.001 for both). These differences were present in men and women. Only administration of folic acid resulted in a transient increase in plasma unmetabolized folic acid (2.5 (2.0) nmol/L after 0.5 h and 4.7 (2.9) nmol/L after 1 h). Intake of (6S)-5-Methyl-THF-Na was safe. The ratios of the AUC0–8 h for (6S)-5-Methyl-THF-Na and (6S)-5-Methyl-THF-Ca to the corresponding folic acid reference group and the delta of these AUC0–8 h did not differ between the studies. In conclusion, a single oral dose of (6S)-5-Methyl-THF-Na caused higher AUC0–8 h and Cmax of plasma (6S)-5-Methyl-THF compared to folic acid. The Na- and Ca- salts of (6S)-5-Methyl-THF are not likely to differ in their pharmacokinetics. Further studies may investigate whether supplementation of the compounds for a longer time will lead to differences in circulating or intracellular/tissue folate concentrations
    corecore