11 research outputs found

    Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands

    Get PDF
    Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the GlobalWetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-'Improve water quality'; 2.4-'Sustainable food production'; and 12.2-'Sustainable management of resources'. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-'Efficient resource consumption'; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: 'Basic human needs', 'Sustainable tourism', 'Environmental impact in urban wetlands', and 'Improving and conserving environment'. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a 'wise use' of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. © 2019 by the authors

    Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level

    Get PDF
    Heavy metal and metalloid contamination of topsoils from atmospheric deposition and release from landfills, agriculture, and industries is a widespread problem that is estimated to affect >50% of the Ell's land surface. Influx of contaminants from soil to groundwater and their further downstream spread and impact on drinking water quality constitute a main exposure risk to humans. There is increasing concern that the present contaminant loading of groundwater and surface water systems may be altered, and potentially aggravated, by ongoing climate change, through large-scale impacts on recharge and groundwater levels. We investigated this issue by performing hydrogeological-geochemical model projections of changes in metal(loid) (As and Pb) mobilization in response to possible (climate-driven) future shifts in groundwater level and fluctuation amplitudes. We used observed initial conditions and boundary conditions for contaminated soils in the temperate climate zone. The results showed that relatively modest increases (0.2 m) in average levels of shallow groundwater systems, which may occur in Northern Europe within the coming two decades, can increase mass flows of metals through groundwater by a factor of 2-10. There is a similar risk of increased metal mobilization in regions subject to increased (seasonal or event-scale) amplitude of groundwater levels fluctuations. Neglecting groundwater level dynamics in predictive models can thus lead to considerable and systematic underestimation of metal mobilization and future changes. More generally, our results suggest that the key to quantifying impacts of climate change on metal mobilization is to understand how the contact between groundwater and the highly water-conducting and geochemically heterogeneous topsoil layers will change in the future. (C) 2019 The Authors. Published by Elsevier B.V

    Blended modeling in commercial and open-source model-driven software engineering tools: A systematic study

    No full text
    Blended modeling aims to improve the user experience of modeling activities by prioritizing the seamless interaction with models through multiple notations over the consistency of the models. Inconsistency tolerance, thus, becomes an important aspect in such settings. To understand the potential of current commercial and open-source modeling tools to support blended modeling, we have designed and carried out a systematic study. We identify challenges and opportunities in the tooling aspect of blended modeling. Specifically, we investigate the user-facing and implementation-related characteristics of existing modeling tools that already support multiple types of notations and map their support for other blended aspects, such as inconsistency tolerance, and elevated user experience. For the sake of completeness, we have conducted a multivocal study, encompassing an academic review, and grey literature review. We have reviewed nearly 5000 academic papers and nearly 1500 entries of grey literature. We have identified 133 candidate tools, and eventually selected 26 of them to represent the current spectrum of modeling tools

    Blended modeling in commercial and open-source model-driven software engineering tools: A systematic study

    No full text
    Blended modeling aims to improve the user experience of modeling activities by prioritizing the seamless interaction with models through multiple notations over the consistency of the models. Inconsistency tolerance, thus, becomes an important aspect in such settings. To understand the potential of current commercial and open-source modeling tools to support blended modeling, we have designed and carried out a systematic study. We identify challenges and opportunities in the tooling aspect of blended modeling. Specifically, we investigate the user-facing and implementation-related characteristics of existing modeling tools that already support multiple types of notations and map their support for other blended aspects, such as inconsistency tolerance, and elevated user experience. For the sake of completeness, we have conducted a multivocal study, encompassing an academic review, and grey literature review. We have reviewed nearly 5000 academic papers and nearly 1500 entries of grey literature. We have identified 133 candidate tools, and eventually selected 26 of them to represent the current spectrum of modeling tools

    The Selenga River delta : a geochemical barrier protecting Lake Baikal waters

    No full text
    The protection of Lake Baikal and the planning of water management measures in the Selenga River Basin require a comprehensive understanding of the current state and functioning of the delta’s ecosystem and hydrogeochemical processes. This is particularly relevant in light of recent and expected future changes involving both the hydrology and water quality in the Lake Baikal basin causing spatiotemporal changes in water flow, morphology, and transport of sediments and metals in the Selenga River delta and thus impacting on delta barrier functions. The central part of the delta had been characterized by sediment storage, especially along the main channels, causing a continuous lift of the delta surface by about 0.75 cm/year−1. Theses morphological changes have a significant impact on hydrological conditions, with historical shifts in the bulk discharge from the left to the right parts of the delta which is distinguished by a relatively high density of wetlands. Regions with a high density of wetlands and small channels, in contrast to main channel regions, show a consistent pattern of considerable contaminant filtering and removal (between 77 and 99 % for key metals), during both high-flow and low-flow conditions. The removal is associated with a significant concentration increase (2–3 times) of these substances in the bottom sediment. In consequence, geomorphological processes, which govern the partitioning of flow between different channel systems, may therefore directly govern the barrier function of the delta

    Wetlandscape Change Information Database (WetCID)

    No full text
    Geography and associated hydrological, hydroclimate and land use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland, but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment – the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature, and annual land use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape, and on the availability and accessibility of associated local data. This novel database can support site assessments, cross-regional comparisons, and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions and changes on whole-wetlandscape functions and ecosystem services

    A training approach for the transition of repeatable collaboration processes to practitioners

    No full text
    This paper presents a training approach to support the deployment of collaboration process support according to the Collaboration Engineering approach. In Collaboration Engineering, practitioners in an organization are trained to facilitate a specific collaborative work practice on a recurring basis. To transfer the complex skill set of a facilitator to support the practitioner in guiding a specific collaboration process design, we propose a detailed training approach based on the logic of Cognitive Load Theory. The training approach focuses on transferring knowledge and skills in the form of thinkLets, i.e. repeatable facilitation techniques. Furthermore, the training contains a process simulation to practice challenges in collaboration support. The training approach was positively evaluated using a questionnaire instrument in a case study.Multi Actor SystemsTechnology, Policy and Managemen
    corecore