169 research outputs found

    Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier

    Get PDF
    Schwann cells (SC) are characterized by a remarkable plasticity that enables them to promptly respond to nerve injury promoting axonal regeneration. In peripheral nerves after damage SC convert to a repair-promoting phenotype activating a sequence of supportive functions that drive myelin clearance, prevent neuronal death, and help axon growth and guidance. Regeneration of peripheral nerves after damage correlates inversely with thrombin levels. Thrombin is not only the key regulator of the coagulation cascade but also a protease with hormone-like activities that affects various cells of the central and peripheral nervous system mainly through the protease-activated receptor 1 (PAR1). Aim of the present study was to investigate if and how thrombin could affect the axon supportive functions of SC. In particular, our results show that the activation of PAR1 in rat SC cultures with low levels of thrombin or PAR1 agonist peptides induces the release of molecules, which favor neuronal survival and neurite elongation. Conversely, the stimulation of SC with high levels of thrombin or PAR1 agonist peptides drives an opposite effect inducing SC to release factors that inhibit the extension of neurites. Moreover, high levels of thrombin administered to sciatic nerve ex vivo explants induce a dramatic change in SC morphology causing disappearance of the Cajal bands, enlargement of the Schmidt-Lanterman incisures and calcium-mediated demyelination of the paranodes. Our results indicate thrombin as a novel modulator of SC plasticity potentially able to favor or inhibit SC pro-regenerative properties according to its level at the site of lesion

    Preliminary groundwater modelling by considering the interaction with superficial water: Aosta plain case (northern Italy)

    Get PDF
    The study is developed through scientific cooperation between the University of Milano-Bicocca and the Regional Agency for Environmental Protection (ARPA) of the Valle d'Aosta Region. Its aim is to produce a decision-support tool to help the Public Administration'manage groundwater and public water supply. The study area is the plain of Aosta, between the cities of Aymavilles and Brissogne; in this area groundwater represents the main source of public water supply. The valley is oriented east-west, along the Baltea for a length of 13.1 km and a width of 4.6 km. The textural and hydrogeological properties of the deposits are strictly connected to glacial deposition and to the subsequent sedimentary processes which took place in glacial, lacustrine and fluvial systems. The study is based on available well information in the Aosta plain - including water wells (133) and piezometers (121) - which have been coded and stored in the well database TANGRAM,. The database facilitates interpretation of the well data, and it allows three-dimensional mapping of subsurface hydrogeological characteristics through database codification and ordinary kriging interpolation. The study is designed to achieve two objectives. The first is to provide the Aosta Public Authorities with a well database in order to simplify groundwater management. The second is to provide Public Authorities with a groundwater flow model of the local aquifer. The model integrates surface and subsurface flows in order to fully account for all important stresses, both natural and anthropogenic, on the groundwater system. It provides a tool for testing hypotheses (such as the impact of new wells) and thereby allows science-based management of the aquifer resource

    The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: A strategy to increase the benefits of soil phytoremediation

    Get PDF
    Most of the plants employed to remove metals from contaminated soils are annuals and have a seed-to- seed life cycle of a few months, usually over spring and summer. Consequently, for most of the year, fields are not actively cleaned but are completely bare and subject to erosion by water and wind. The objective of this study was to evaluate the benefits of using Lupinus albus as a winter crop in a rotation sequence with a summer crop ideally selected for phytoextraction, such as industrial hemp. Lupin plants were grown in two alkaline soil plots (heavy metal-contaminated and uncontaminated) of approximately 400 m 2 each after the cultivation and harvest of industrial hemp. A smaller-scale parallel pot experiment was also performed to better understand the lupin behavior in increasing concentrations of Cd, Cu, Ni and Zn. White lupin grew well in alkaline conditions, covering the soil during the winter season. In few months plants were approximately 40e50 cm high in both control and contaminated plots. In fields where the bioavailable fraction of metals was low (less than 12%), plants showed a high tolerance to these contaminants. However, their growth was affected in some pot treatments in which the concen- trations of assimilable Cu, Zn and Ni were higher, ranging from approximately 40e70% of the total concentrations. The lupin's ability to absorb heavy metals and translocate them to shoots was negligible with respect to the magnitude of contamination, suggesting that this plant is not suitable for extending the period of phytoextraction. However, it is entirely exploitable as green manure, avoiding the appli- cation of chemical amendments during phytoremediation. In addition, in polluted fields, white lupin cultivation increased the soil concentration of live bacteria and the bioavailable percentage of metals. On average live bacteria counts per gram of soil were 65 10 6 ± 18 10 6 and 99 10 6 ± 22*10 6 before and after cultivation, respectively. The percentages of bioavailable Cu, Pb, Ni, Zn and Cr, which were 5.7 ± 0.7, 5.3 ± 1.7, 1.2 ± 0.1, 12 ± 1.5 and 0.1 ± 0.02%, respectively, before lupin growth, increased to 9.6 ± 1.6, 7 ± 2, 2 ± 0.3, 14 ± 1.5 and 0.1 ± 0.02% after lupin harvest. On the whole, our results indicate that the winter cultivation of white lupin in sequence with a metal- accumulator summer crop can improve the recovery of soil quality during the phytoextraction period. It improves the safety of the area, limiting additional ecological and human health problems, and enhances soil health by avoiding the use of chemical amendments and by increasing the levels of viable microorganism

    Glycerolized reticular dermis as a new human acellular dermal matrix: An exploratory study

    Get PDF
    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco's Modified Eagle's Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties

    Calcium-Dependent Src Phosphorylation and Reactive Oxygen Species Generation Are Implicated in the Activation of Human Platelet Induced by Thromboxane A2 Analogs

    Get PDF
    The thromboxane (TX) A2 elicits TP-dependent different platelet responses. Low amounts activate Src kinases and the Rho–Rho kinase pathway independently of integrin αIIbβ3 and ADP secretion and synergize with epinephrine to induce aggregation. Aim of the present study was to investigate the role Src kinases and the interplay with calcium signals in reactive oxygen species (ROS) generation in the activatory pathways engaged by TXA2 in human platelets. All the experiments were performed in vitro or ex vivo. Washed platelets were stimulated with 50–1000 nM U46619 and/or 10 μM epinephrine in the presence of acetylsalicylic acid and the ADP scavenger apyrase. The effects of the ROS scavenger EUK-134, NADPH oxidase (NOX) inhibitor apocynin, Src kinase inhibitor PP2 and calcium chelator BAPTA were tested. Intracellular calcium and ROS generation were measured. Platelet rich plasma from patients treated with dasatinib was used to confirm the data obtained in vitro. We observed that 50 nM U46619 plus epinephrine increase intracellular calcium similarly to 1000 nM U46619. ROS generation was blunted by the NOX inhibitor apocynin. BAPTA inhibited ROS generation in resting and activated platelets. Phosphorylation of Src and MLC proteins were not significantly affected by antioxidants agents. BAPTA and antioxidants reduced P-Selectin expression, activation of integrin αIIbβ3and platelet aggregation. TXA2-induced increase in intracellular calcium is required for Src phosphorylation and ROS generation. NADPH oxidase is the source of ROS in TX stimulated platelets. The proposed model helps explain why an incomplete inhibition of TP receptor results in residual platelet activation, and define new targets for antiplatelet treatment

    Clinical profile of trazodone users in a multisetting older population: data from the Italian GeroCovid Observational study

    Get PDF
    Background and objectives: Depression is highly prevalent in older adults, especially in those with dementia. Trazodone, an antidepressant, has shown to be effective in older patients with moderate anxiolytic and hypnotic activity; and a common off-label use is rising for managing behavioral and psychological symptoms of dementia (BPSD). The aim of the study is to comparatively assess the clinical profiles of older patients treated with trazodone or other antidepressants. Methods: This cross-sectional study involved adults aged ≥ 60 years at risk of or affected with COVID-19 enrolled in the GeroCovid Observational study from acute wards, geriatric and dementia-specific outpatient clinics, as well as long-term care facilities (LTCF). Participants were grouped according to the use of trazodone, other antidepressants, or no antidepressant use. Results: Of the 3396 study participants (mean age 80.6 ± 9.1 years; 57.1% females), 10.8% used trazodone and 8.5% others antidepressants. Individuals treated with trazodone were older, more functionally dependent, and had a higher prevalence of dementia and BPSD than those using other antidepressants or no antidepressant use. Logistic regression analyses found that the presence of BPSD was associated with trazodone use (odds ratio (OR) 28.4, 95% confidence interval (CI) 18-44.7 for the outcome trazodone vs no antidepressants use, among participants without depression; OR 2.17, 95% CI 1.05-4.49 for the outcome trazodone vs no antidepressants use, among participants with depression). A cluster analysis of trazodone use identified three clusters: cluster 1 included mainly women, living at home with assistance, multimorbidity, dementia, BPSD, and depression; cluster 2 included mainly institutionalized women, with disabilities, depression, and dementia; cluster 3 included mostly men, often living at home unassisted, with better mobility performance, fewer chronic diseases, dementia, BPSD, and depression. Discussion: The use of trazodone was highly prevalent in functionally dependent and comorbid older adults admitted to LTCF or living at home. Clinical conditions associated with its prescription included depression as well as BPSD

    Nirmatrelvir treatment of SARS-CoV-2-infected mice blunts antiviral adaptive immune responses

    Get PDF
    Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals
    • …
    corecore