2,046 research outputs found

    Direct Algebraic Restoration of Slavnov-Taylor Identities in the Abelian Higgs-Kibble Model

    Full text link
    A purely algebraic method is devised in order to recover Slavnov-Taylor identities (STI), broken by intermediate renormalization. The counterterms are evaluated order by order in terms of finite amplitudes computed at zero external momenta. The evaluation of the breaking terms of the STI is avoided and their validity is imposed directly on the vertex functional. The method is applied to the abelian Higgs-Kibble model. An explicit mass term for the gauge field is introduced, in order to check the relevance of nilpotency. We show that, since there are no anomalies, the imposition of the STI turns out to be equivalent to the solution of a linear problem. The presence of ST invariants implies that there are many possible solutions, corresponding to different normalization conditions. Moreover, we find more equations than unknowns (over-determined problem). This leads us to the consideration of consistency conditions, that must be obeyed if the restoration of STI is possible.Comment: 10 pages, Latex and packages amsfonts, amssymb and amsth

    New big data platforms are more efficient, but pose a serious threat to privacy

    Get PDF
    Most new systems offer only basic enforcement, whereas traditional ones have various protection frameworks, write Pietro Colombo and Elena Ferrari. The past few years have seen changes in the organisation of business models and work styles, caused by the rapid evolution of data analysis and data management systems. Business strategies are more and more driven by the integrated analysis of huge ..

    Fine-Grained Access Control Within NoSQL Document-Oriented Datastores

    Get PDF
    The recent years have seen the birth of several NoSQL datastores, which are getting more and more popularity for their ability to handle high volumes of heterogeneous and unstructured data in a very efficient way. In several cases, NoSQL databases proved to outclass in terms of performance, scalability, and ease of use relational database management systems, meeting the requirements of a variety of today ICT applications. However, recent surveys reveal that, despite their undoubted popularity, NoSQL datastores suffer from some weaknesses, among which the lack of effective support for data protection appears among the most serious ones. Proper data protection mechanisms are therefore required to fill this void. In this work, we start to address this issue by focusing on access control and discussing the definition of a fine-grained access control framework for document-oriented NoSQL datastores. More precisely, we first focus on issues and challenges related to the definition of such a framework, considering theoretical, implementation, and integration aspects. Then, we discuss the reasons for which state-of-the-art fine-grained access control solutions proposed for relational database management systems cannot be used within the NoSQL scenario. We then introduce possible strategies to address the identified issues, which are at the basis of the framework development. Finally, we shortly report the outcome of an experience where the proposed framework has been used to enhance the data protection features of a popular NoSQL database

    Access control technologies for Big Data management systems: literature review and future trends

    Get PDF
    Abstract Data security and privacy issues are magnified by the volume, the variety, and the velocity of Big Data and by the lack, up to now, of a reference data model and related data manipulation languages. In this paper, we focus on one of the key data security services, that is, access control, by highlighting the differences with traditional data management systems and describing a set of requirements that any access control solution for Big Data platforms may fulfill. We then describe the state of the art and discuss open research issues

    A slug capturing method in unconventional scenarios: The 5ESCARGOTS code applied to non-Newtonian fluids, high viscous oils and complex geometries

    Get PDF
    Abstract Previous work showed that a one-dimensional, hyperbolic, transient five-equation two-fluid model can predict automatically the formation, growth, and subsequent development of slugs in horizontal and near-horizontal flow. This method was implemented in a finite volume numerical scheme – called 5ESCARGOTS code. Comparison with experimental data showed that it can be used to predict the flow pattern and statistical characteristics (slug velocity, length, and frequency). However, the capabilities of this approach have been tested only for water-air flows in a straight horizontal pipe. In this work, we validate the application of the code to some unconventional problems. Firstly, we test the possibility of slug capturing approach to describe and predict the relevant features of air/high viscosity oils or air/non-Newtonian fluids flows. Comparisons between some slug characteristics and empirical correlations, available in literature, are discussed. Then, we move from simple geometries toward more complex conditions that may be representative of actual application cases, also employing high viscous oils as liquid phase. Comparison against experimental data shows results in reasonable agreement

    Velocity profiles description and shape factors inclusion in a hyperbolic, one-dimensional, transient two-fluid model for stratified and slug flow simulations in pipes

    Get PDF
    In a previous work it has been shown that a one-dimensional, hyperbolic, transient five equations two-fluid model is able to numerically describe stratified, wavy, and slug flow in horizontal and near-horizontal pipes. Slug statistical characteristics can be numerically predicted with results in good agreement with experimental data and well-known empirical relations. In this model some approximated and simplified assumptions are adopted to describe shear stresses at wall and at phase interface.In this paper, we focus on the possibility to account for the cross sectional flow by inserting shape factors into the momentum balance equations of the aforementioned model. Velocity profiles are obtained by a pre-integrated model and they are computed at each time step and at each computational cell. Once that the velocity profiles are known, the obtained shape factors are inserted in the numerical resolution. In this way it is possible to recover part of the information lost due to the one-dimensional flow description.Velocity profiles computed in stratified conditions are compared against experimental profiles measured by PIV technique; a method to compute the velocity profile during slug initiation and growth has been developed and the computed velocity distribution in the liquid phase was compared against the one-seventh power law. Keywords: Multi-phase pipeline transport, Oil & gas, Hyperbolic two-fluid model, Velocity profiles, Shape factor

    Non-invasive monitoring and control in silicon photonics by CMOS integrated electronics

    Get PDF
    As photonics breaks away from today's device level toward large scale of integration and complex systems-on-a-chip, concepts like monitoring, control and stabilization of photonic integrated circuits emerge as new paradigms. Here, we show non-invasive monitoring and feedback control of high quality factor silicon photonics resonators assisted by a transparent light detector directly integrated inside the cavity. Control operations are entirely managed by a CMOS microelectronic circuit, hosting many parallel electronic read-out channels, that is bridged to the silicon photonics chip. Advanced functionalities, such as wavelength tuning, locking, labeling and swapping are demonstrated. The non-invasive nature of the transparent monitor and the scalability of the CMOS read-out system offer a viable solution for the control of arbitrarily reconfigurable photonic integrated circuits aggregating many components on a single chip
    • …
    corecore