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Previous work showed that a one-dimensional, hyperbolic, transient five-equation two-fluid model can
predict automatically the formation, growth, and subsequent development of slugs in horizontal and
near-horizontal flow. This method was implemented in a finite volume numerical scheme e called
5ESCARGOTS code. Comparison with experimental data showed that it can be used to predict the flow
pattern and statistical characteristics (slug velocity, length, and frequency). However, the capabilities of
this approach have been tested only for water-air flows in a straight horizontal pipe.

In this work, we validate the application of the code to some unconventional problems. Firstly, we test
the possibility of slug capturing approach to describe and predict the relevant features of air/high vis-
cosity oils or air/non-Newtonian fluids flows. Comparisons between some slug characteristics and
empirical correlations, available in literature, are discussed. Then, we move from simple geometries
toward more complex conditions that may be representative of actual application cases, also employing
high viscous oils as liquid phase. Comparison against experimental data shows results in reasonable
agreement.

© 2018 Southwest Petroleum University. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Slug flow is a typical flow regime that occurs in many engi-
neering scenarios, such as in oil and gas industry, chemical process,
and energy production systems. In horizontal and near horizontal
pipes, this flowpattern arises from stratified flow due to the growth
of small perturbations, which may appear at the interface between
liquid and gas and then may grow into larger waves until they fill
completely the pipe. Moreover, slug flow can also occur at changes
in pipe slope, for example when the pipe inclination, initially
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horizontal or downward, turns upward generating a v-section: here
the liquid accumulates because of gravity. As consequence, the
liquid volume fraction increases until the stratified-slug flow
transition occurs.

Often, slug flow characteristics are numerically computed
by steady-state method, such as the unit-cell approach, see
Refs. [1e3], or by transient models, as in the empirical slug specifi-
cation method e [4e6] e and in slug tracking, see Refs. [7,8].
However, as pointed out by Issa and Kempf [9], these method have
some limits: in particular, they are not able to predict automatically
the transition between flow patterns.

Among transient models, Issa and Kempf [9] introduced a third
method, called slug capturing, where stratified, slug, and transition
regimes are described by the same set of equations and closure
relations. The slug development, i.e. formation, growth, and decay,
is naturally described by the numerical solution of the transient
two-fluid model, written for stratified flow. When the liquid vol-
ume fraction increases and tends to unity, slug formation is an
automatic outcome of the numerical computation. In other words,
slug flow is established in a natural manner from the computed
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under
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flow because of hydrodynamic instabilities emerging from strati-
fied flow e for details see Ref. [9]. Applications and improvements
of this method can be found also in Refs. [10e12].

However, the four-equation two-fluid model adopted in these
works to describe the stratified flow, is affected by ill-posedness, as
noticed also by Issa and Kempf [9]. The ill-posedness of the two-
fluid model is a critical issue, as pointed out by many Authors,
see Refs. [13,14].Well-posedness is strictly linked to hyperbolicitye

[15,16] e and, therefore, some methods that make the two-fluid
model hyperbolic have been developed during the last decades,
see Ref. [15] for an overview of these methods. Among these
methods, the mathematical regularization technique introduced by
Baer and Nunziato [17] and by Saurel and Abgrall [18] consists in
the addition of a transport equation for the gas volume fraction to
the four-equation two-fluid model: it has been demonstrated that
the addition of this equation enforces hyperbolicity and closes the
system. This five-equation two-fluid model has been adopted by
other few Authors, see Refs. [19,20].

Recently, Ferrari et al. [21] developed a numerical scheme that
solves a hyperbolic five-equation two-fluid model with compress-
ible phases. They show the capability of their code to predict slug
flow characteristics by a slug capturing method. Their system is
closed by a pressure relaxation process and pressure terms are
written in a consistent way to represent a two-phase stratified flow,
as prescribed by Brauner and Moalem Maron [22]. The five-
equation model adopted and modified by Ferrari et al. [21] for
slug capturing purpose has three main advantages, compared to
other two-fluid models available in literature:

(1) It is hyperbolic, without the addition of a viscous term;
(2) It accounts for the physical effect of surface tension avoiding

the numerical issues due to the introduction of a second
order derivative in the computation of the curvature func-
tion; this derivative is solved separately from the main
model, within the pressure relaxation process;

(3) The hypothesis of long waves, which is usually adopted by
other Authors to disregard the viscous term (losing, mean-
time, the hyperbolicity and the physical effect that this term
describes), is here not necessary.

The numerical algorithm developed in Ref. [21] is based on the
high-resolution finite volume scheme, called Roe5, previously
presented by Munkejord [23]. Ferrari et al. [21] modified the Roe5
scheme to account for their closure models and they added a nu-
merical criterion to capture automatically flow regime transitions,
avoiding the singularities which characterize a two-fluid model
when the liquid volume fraction tends to unity. They showed that
their code is grid independent, and able to capture transitions be-
tween stratified, wavy, and slug flow adopting very low thresholds
in the transition criterion, if compared to the codes developed by
other Authors. Finally, they computed the main slug characteristics
and flow pattern map for air-water flow in horizontal pipe: pre-
sented results are in good agreement with empirical correlations or
experimental data available in literature.

This paper presents a direct extension to some unconventional
scenarios of the previous work by Ferrari et al. [21]: the same
mathematical model and numerical method are here adopted to
demonstrate that the code implemented in Ref. [21] is applicable
and able to simulate slug conditions in two-phase flows where the
liquid phase is a high-viscous oil or a non-Newtonian fluid, or
where the pipe configuration is characterized by a more complex
geometry than a horizontal one.

The paper is organized as follows: Sections 2 and 3 briefly recall
the five-equation two-fluid model and the numerical method
previously presented by Ferrari et al. [21], respectively. In Section 4,
the results of simulations applied to some unconventional sce-
narios, such as air/high-viscous oil, air/non-Newtonian fluid, and
complex geometries, compared to empirical correlations or
experimental data, are presented. Finally, conclusions are discussed
in Section 5.
2. Model

To describe a two-phase flow, the five-equation, hyperbolic,
one-dimensional, two-fluid model widely investigated by Ferrari
et al. [21] is adopted. Under the assumption of isothermal flow, i.e.
the energy equations are neglected, the model consists in five time-
dependent partial differential equations, where four of them are
derived from the conservation of mass and momentum for each
phase. A fifth equation, which expresses the evolution of the gas
volume fraction, is added to the system. The system is written as

vag
vt

þ ui
vag
vx

¼ rp
�
pig � pil

�
; (1)

v
�
agrg

�
vt

þ
v
�
agrgug

�
vx

¼ 0; (2)

vðalrlÞ
vt

þ vðalrlulÞ
vx
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v
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agrgug

�
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þ
v
�
agrgu

2
g

�
vx
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vpig
vx

þ rgagg
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vx

cosðwÞ
¼ �rgagg sinðwÞ � Fgw � Fi; (4)
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vt

þ
v
�
alrlu

2
l

�
vx

þ al
vpil
vx

þ rlalg
vh
vx

cosðwÞ
¼ �rlalg sinðwÞ � Flw þ Fi; (5)

where the subscripts l and g stand for liquid and gas phase,
respectively; the subscript i indicates the interfacial variables and
the subscript w specifies the wall. a is the volume fraction, r is
density and u stands for phase velocity; p is the pressure, pig and pil
indicate gas and liquid interfacial pressures, respectively. As indi-
cated in Fig. 1, q is the inclination angle, and g stands for the gravity
acceleration. The frictional forces per unit volume are represented
by the F terms: they call for closure relations, which are explained
in Section 2.2. The variable h is the height of the liquid surface, as
shown in Fig. 1. The pressure formulation in momentum Eqs.
(4)e(5) derives from the average pressure value at each phase in
stratified conditions, as prescribed by Brauner et al. [22]. Finally, the
equations are complemented by the relation between the volume
fractions of the two phases,ag þ al ¼ 1:

Thanks to the addition of Eq. (1) to the four-equation two-fluid
model, the five-equation system becomes hyperbolic. Obviously,
Eq. (1) needs a closure relation for the interfacial velocity ui: Saurel
and Abgrall [18] estimate it as

ui ¼
P

akrkukP
akrk

; (6)

which represents the velocity of the centre of mass. The subscript k
stands for the generic phase.

In the Eq. (1), rp represents the pressure relaxation parameter. In
this paper, pressure relaxation is solved by an instantaneous pres-
sure relaxation process, as proposed by Saurel and Abgrall [18] and
further discussed in Refs. [21,23]. As shown by Ferrari et al. [21], the



Fig. 1. Geometry.
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pressure relaxation process allows to account for surface tension
effects without the issues due to the difficulties which often char-
acterize the numerical solution of this term, when inserted by other
Authors into their two-fluid model to ensure the hyperbolicity
(here provided, instead, by the addition of Eq. (1) to the system).
Moreover, as already observed in Section 1, this fact allows to avoid
the hypothesis of long waves, usually introduced in other works to
disregard the second order derivative that appears in the viscous
term formulation. However, Ferrari et al. [21] showed that surface
tension has a negligible effect on a liquid-air two-phase flow in
horizontal pipe; then, in the present paper, the possibility to ac-
count for this effect is disregarded.

As proved by many Authors [21,23], the five-equation system
(1)e(5), with instantaneous pressure relaxation, provides a strictly
hyperbolic alternative to the traditional four-equation two-fluid
model. Moreover, this model is suitable for slug capturing, as
shown and discussed by Ferrari et al. [21]. Thanks to all these
peculiar characteristics, we chose to adopt this model in this work.

2.1. Equation of state (EOS)

In the five-equation model, liquid and gas phases are both
assumed to be compressible, hence the balance Eqs. (1)e(5) must
be closed with the equation of state

pk ¼ c2k
�
rk � rk;0

�
� p0; (7)

which relates densities to pressures; ck is the speed of sound in
phase k, rk,0 and p0 are the reference values for density and pres-
sure, respectively.

2.2. Closure models

The liquid-wallFlw, gas-wallFgw and interfacial Fi shear forces
calls for closure relations. In this paper, they are defined as

Flw ¼ tlwSl
A

; Fgw ¼ tgwSg
A

; Fi ¼
tiSi
A

; (8)

where, as shown in Fig. 1, A is the cross-section area, Sl, Sg are the
perimeters wetted by the liquid and gas phases, respectively, and Si
stands for the cross section of the interfacial surface between the
two phases.

Shear stresses t are written as

tlw ¼ 1
2
flwrljuljul; tgw ¼ 1

2
fgwrg

��ug��ug;

ti ¼
1
2
firg

��ug � ul
���ug � ul

�
: (9)

Here, we adopt the same friction factors formulation prescribed
in previous works about slug capturing, see Refs. [21,9].
The gas-wall friction factors and the interfacial friction factor
correlations adopted in case of turbulent flow are

fg ¼

8>><
>>:

16
Reg

if Reg <2100

0:046
�
Reg

��0:2 if Reg � 2100

; (10)

fi ¼

8><
>:

16
Rei

if Rei <2100

0:046ðReiÞ�0:2 if Rei � 2100

: (11)

Whereas, for liquid-wall friction friction factor we use

fl ¼

8><
>:

24
Rel

if Rel <2100

0:0262ðalReslÞ�0:139 if Rel >2100

: (12)

Finally, the Reynolds numbers are defined as follows

Reg ¼ 4Agugrg�
Sg þ Si

�
mg

;Rei ¼
4Ag

��ug � ul
��rg�

Sg þ Si
�
mg

;

Rel ¼
4Alulrl
ðSlÞml

;Rel ¼
Duslrl
mg

: (13)

Referring to Fig. 1, the parameters in Eq. (13) are defined as: D is
the pipe internal diameter, Ag and Al represents the pipe cross
section occupied by the gas and liquid phase, respectively; m stands
for the dynamic viscosity and usl indicates the liquid superficial
velocity.

3. Numerical method

As done in some other works, see Refs. [21,23], the system of
Eqs. (1)e(5) is discretised on a uniform one-dimensional grid, by a
finite volume method and by a first order explicit discretisation in
time. The numerical solution is here obtained through a succession
of operators in a fractional-step process

Qnþ1
i ¼ LDts LDth Qn

i ; (14)

where Qn
i is the numerical approximation of the vector of variables

in the cell i and at time n, whereas Qnþ1
i is the same vector at time

n þ 1. Then, the solution is updated at each iteration through two
sequential sub-steps.

1. In the first sub-step, in each cell i, to solve the hyperbolic system
vq
vt

þ A qð Þ vq
vx

¼ 0; (15)

which contains non-conservative terms, we apply the



Fig. 2. Air/high viscous oil flow in horizontal pipe. Slug flow evolution. Oil coloured in
brown.
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hyperbolic operator LDth .
This step calls for the solution of the linear Riemann problem at
cells interface. To do that, a Roe method is adopted. This leads to
an upwind resolution of the wave phenomena appearing in the
problem and the solution of the Riemann problem is obtained
basing on the Roe5 solver by Munkejord and Gran [23]. This
solver computes, at each iteration, the value of the unknown
vector Qh;nþ1

i by a high resolution extension of Godunov's
method. The high resolution correction guarantees a second
order accuracy in space.

2. Then, in a second sub-step, the addition of source terms
appearing in momentum Eqs. (4)e(5) is applied by the operator
LDts . Moreover, this operator takes into account the pressure
relaxation process as well, where, if necessary, the surface ten-
sion effect is accounted for. For details, see Ref. [21].
Moreover, in Ferrari et al. [21] the Roe5 scheme is modified to

account for the pressure terms in stratified flow conditions, to
correctly model shear forces, and to describe the transition from
two (i.e. stratified flow) to one phase (i.e. slug flow). Indeed,
during the slug onset process, the transition from two-phase
flow to single phase flow occurs, and the liquid volume frac-
tion grows and tends to unity; conversely, the gas volume
fraction tends to zero and this generates numerical problems as
discussed by Munkejord and Gran [23]. Ferrari et al. [21]
introduced a slug criterion to handle these numerical issues,
allowing a correct slug capturing numerical simulation.

Ferrari et al. [21] implemented this numerical method in a code
called 5ESCARGOTS, which is adopted in this work.

4. Results

4.1. High viscous oils

According to Nicklin [24], the velocity of gas bubbles in the air/
oil slug flow is well approximated by the relation

ut ¼ C0um þ ud; (16)

where C0 is the distribution parameter, um is the mixture velocity,
ud is the drift velocity. This equation is used to fit data from ex-
periments in order to obtain a correlation for the slug translation
velocity for air/oil flows.

We try to numerically simulate an air/high-viscous oils two-
phase flow in a horizontal pipe and to compare computed slug
velocities with empirical correlations available in literature. We
focus especially on the trend of slug velocities as function of
mixture velocities, checking if Eq. (16) is respected.

The pipe is horizontal (q¼ 0�) with length L¼ 40.0m and in-
ternal diameter D¼ 0.0508m. Phase constants for EOS, Eq. (7), are
reported in Table 1. Numerical simulations are performed with an
oil with a viscosity of ml¼ 0.150 Pa∙s; air viscosity is taken equal to
mg¼ 1.79∙10�5 Pa∙s. The outlet is open to ambient pressure.

The numerical parameters are set constant for all simulations:
the time step is Dt¼ 1.0∙10�5 s, while the cells number is equal to
1000 (Dx/D¼ 0.79) and the CFL¼ 0.25.

A first test setting superficial velocities as usg¼ 1.0m/s and
Table 1
Constants for the EOS, Eq. (7), for air/oil flow.

ck [m/s] rk,0 [kg/m3] mk [Pa∙s]

air (g) 316 1.0 1.79∙10�5

oil (l) 1000 850.0 0.150
usl¼ 1.0m/s is performed. Fig. 2 shows that the code predicts a
reasonable slug flow formation in time along the pipe and it gives a
qualitative idea of how slug flow develops.

Then, we simulate the same air/oil two-phase flow varying inlet
superficial velocities: the oil and gas superficial velocities are
chosen in the range (0.8 ÷ 2.0) m/s and (0.1 ÷ 6.0) m/s, respectively.

In Fig. 3 numerically computed slug velocities, compared to an
experimentally obtained relation e Foletti et al. [25] e are pre-
sented: numerical data are in quite good agreement with the trend
predicted by experiments, with a maximum error of about 25%.
4.2. Non-Newtonian fluids

Two-phase gas/liquid flowswhere the fluid has a shear-thinning
behaviour are often involved in chemical and oil industry pro-
cesses. Only few experimental studies have been done regarding
this particular type of two-phase flow. Picchi et al. [26] performed
some experiments on gas/non-Newtonian fluid two-phase flow in
horizontal and near horizontal pipes. In particular, they created
experimental flow pattern maps comparing experimental obser-
vations to the theoretical stratified flow existence region.
Fig. 3. Air/high viscous oil flow in horizontal pipe. Slug mean velocity as function of
mixture velocity.



Table 2
Physical constants for CMC-6, comparison against water.

Conc. [%] ck [m/s] rk,0 [kg/m3] m [Pa∙sn] n [-]

water (l) e 1000 1000 0.001 1
CMC-6 (l) 6 1000 1002 0.264 0.757

Fig. 4. Air/non-Newtonian fluid flow. Slug flow evolution. CMC-6 coloured in cyan.
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Our purpose is the creation of a flow pattern map through nu-
merical simulations to observe if our code is able to simulate gas/
non-Newtonian fluid two-phase flows and to predict the correct
transition between stratified and slug flow.

Assuming that fluid has a power-law rheological behaviour,
Picchi et al. [26] consider the shear stress t related to the shear rate
_g by t ¼ mð _gÞn, where m and n are two fitting parameters that
represent the fluid consistency index and the flow behaviour index,
respectively. Under this assumption, we have to take into account
the different behaviour of a non-Newtonian fluid in the mathe-
matical definition of closure relations for shear stress, see Section
2.2. In particular, we must change the formulation of the Reynolds
number for the liquid phase Rel from Eq. (13) to

Rel ¼
�
4Al
Sl

�n u2�n
l rl

m8n�1
�
1þ3n
4n

�n ; (17)
Fig. 5. Air/non-Newtonian fluid flow. Slug flow evolution. Comparison between
In their experiments, Picchi et al. [26] employed, as liquid phase,
a shear-thinning fluid obtained by adding Carboxymethyl Cellulose
(CMC) to water in concentration of 6%. The same experimental
setup has been simulated by the 5ESCARGOTS code: an air/CMC-6
two-phase flow in a pipe 5� downward inclined, with diameter
and length equal to 0.022m and 9.0m, respectively. Physical
properties of CMC-6 are reported in Table 2 in comparison with
water properties.

All simulations are performed with Dt¼ 1.0∙10�5 s, Dx/D¼ 1.02,
and CFL¼ 0.44. In Fig. 4 the evolution of the liquid volume fraction
is reported. Liquid and gas superficial velocities are set to 0.86m/s
and 0.61m/s, respectively. The transition from stratified flow to slug
flow is clearly visible.

In order to obtain a flow pattern map, 60 simulations are per-
formed with different couples of superficial velocities: for gas
phase, superficial velocities are set in the range (0.1 ÷ 2.0) m/s;
instead, for non-Newtonian liquid phase, they are chosen between
0.05m/s and 0.87m/s.

Fig. 5a shows the experimental map obtained by Picchi et al.
[27]; conversely, in Fig. 5b flow regimes obtained by numerical
simulations are reported. The green line represents the zero char-
acteristics (ZRC) boundary which gives the region of existence of the
stratified flow regime computed by the two-fluid model pre-
dictions, see Ref. [12].

Comparing the two flow pattern maps of Fig. 5, we can observe
that, since the gas entrainment is neglected in our model, see
Section 2, we are not able to identify the differences between slug
and plug flow; sowe consider all flows that are not stratified as slug
flow. Moreover, although numerical results are in good agreement
with theoretical predictions (ZRC line), Fig. 5b shows that the
transition between stratified and slug flow begins at values of liquid
superficial velocity higher than the ones observed experimentally.
This can be due to the numerical diffusion that affects the
computational scheme, explained in Section 3, which tends to
smooth little instabilities which can eventually develop into slugs.
For details about this issue see Ref. [21].

4.3. TUFPP loop

In this Section, we present an example of a more complex
configuration. It is an air-high viscous oil flow in a pipe character-
ized by a length of 41m, an internal diameter D ¼ 0.0508m, and
composed by three different consecutive parts: as shown in Fig. 6,
the first part is 20m long with an upward inclination q ¼ 2�, the
second one, with a length L¼ 1m, is horizontal, and, finally, the last
part is 20m long and downward inclined, with q ¼ �2�. This
configuration is the reproduction of the TUFPP loop of the Uni-
versity of Tulsa (OK, US). Constant parameters that appear in EOS -
experimental (a) e Picchi et al. [27] e and numerical (b) flow pattern map.



Fig. 6. TUFPP loop. Slug flow evolution. Oil coloured in brown.
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Eq. (7) - are reported in Table 1. Viscosities are set to
mg¼ 1.79∙10�5 Pa∙s for the gas phase, and to ml¼ 0.155 Pa∙s for the
liquid one. Inlet gas and liquid superficial velocities are fixed equal
to usg¼ 0.6m/s and to usl¼ 0.08m/s, respectively, whereas the
outlet is open to ambient.

Numerical parameters are set as follows: the time step is equal
toDt¼ 1.0∙10�5 s, while the cells number is 900 (Dx/D¼ 0.9) with a
CFL of 0.22.

For this particular configuration, the theoretical model, as the
one proposed by Brauner and Moalem Maron [28], predicts slug
flow only in the first upward inclined part of the pipe, and stratified
flow in the third downward inclined part. Some experiments car-
ried out recently on the TUFPP loop have shown that the flow
regime predicted by the theoretical model is in agreement with
experimental observations in the first part of the pipe only (the
upward inclined one): in fact, in the downward inclined branch,
actual flow shows slug conditions. Fig. 6 shows results computed by
the numerical code adopted in this work: the numerical simulation
produces the same behaviour of experiments, and the slug flow
appears in the last downward inclined part of the pipe as well.
5. Conclusions

In this paper numerical simulations of two-phase flow in some
unconventional scenarios using a one-dimensional, hyperbolic,
five-equation two-fluid model have been presented. This work
represents an extension of thework previously presented by Ferrari
et al. [21]. Some actual applications are simulated to evaluate the
ability of the code to predict slug flow onset, evolution and char-
acteristics in unconventional cases. The 5ESCARGOTS code is able
to simulate not only standard air-water flow situations, see
Ref. [21], but also air-high viscous oil flow, air/non-Newtonian flow,
and configuration characterized by more complex geometry. In all
the cases analysed in this work, results are in good agreement with
empirical correlations or experimental observations available in
literature.

Since very few works about transient numerical simulations of
slug flow in unconventional scenarios have been carried out pre-
viously by other Authors, the encouraging results presented here
represent a first step to the application of academic numerical code
to the simulation of more actual configurations, closer to industrial
problems.
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