79 research outputs found

    Bone marrow reticulocytes: a Plasmodium vivax affair?

    Get PDF
    In this issue of Blood, Malleret and colleagues show the importance of the bone marrow in Plasmodium vivax biology by proving the preferential infection of young reticulocytes (generally restricted to the bone marrow), which then experience accelerated maturation postinvasion

    Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of plasmodium falciparum

    Get PDF
    BACKGROUND: Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. RESULTS: This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca2+ levels. CONCLUSIONS: This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca2+ oscillations suggests a potential role of NAADP in regulating Ca2+ signalling of P. falciparum

    Detection of Plasmodium falciparum male and female gametocytes and determination of parasite sex ratio in human endemic populations by novel, cheap and robust RTqPCR assays

    Get PDF
    The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites

    Transmission-blocking drugs for malaria elimination

    Get PDF
    Preventing human-to-mosquito transmission of malaria parasites provides possible solutions to interrupt the malaria parasite life cycle for malaria elimination. The development of validated routine assays enabled the discovery of such transmission-blocking compounds. Currently, one development priority remains on combinations of dual-active compounds with equipotent activity against both the disease-causing asexual and transmissible, sexual erythrocytic stages. Additionally, transmission-blocking compounds that target gametocyte-specific biology could be used in combination with compounds against asexual parasites. In either case, preventing transmission will reduce the risk of reinfection and, if different processes are targeted, also curb the spread of drug resistance. Here, we provide an updated roadmap to the discovery and development of new antimalarials with transmission-blocking activity to guide drug discovery for malaria elimination.The South African Department of Science and Innovation (DSI); the National Research Foundation (SA NRF) South African Research Chair Initiative; drug discovery funding from the Italy/South Africa Joint Research Program (ISARP) from the SA DSI and NRF and the Italian Ministries of Health and of Foreign Affairs and International Cooperation.http://www.journals.elsevier.com/trends-in-parasitologyhj2022BiochemistryGeneticsMicrobiology and Plant PathologyUP Centre for Sustainable Malaria Control (UP CSMC

    Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subtelomeric <it>RIFIN </it>genes constitute the most abundant multigene family in <it>Plasmodium falciparum</it>. <it>RIFIN </it>products are targets for the human immune response and contribute to the antigenic variability of the parasite. They are transmembrane proteins grouped into two sub-families (RIF_A and RIF_B). Although recent data show that RIF_A and RIF_B have different sub-cellular localisations and possibly different functions, the same structural organisation has been proposed for members of the two sub-families. Despite recent advances, our knowledge of the regulation of <it>RIFIN </it>gene expression is still poor and the biological role of the protein products remain obscure.</p> <p>Results</p> <p>Comparative studies on <it>RIFINs </it>in three clones of <it>P. falciparum </it>(3D7, HB3 and Dd2) by Multidimensional scaling (MDS) showed that gene sequences evolve differently in the 5'upstream, coding, and 3'downstream regions, and suggested a possible role of highly conserved 3' downstream sequences. Despite the expected polymorphism, we found that the overall structure of <it>RIFIN </it>repertoires is conserved among clones suggesting a balance between genetic drift and homogenisation mechanisms which guarantees emergence of novel variants but preserves the functionality of genes. Protein sequences from a <it>bona fide </it>set of 3D7 RIFINs were submitted to predictors of secondary structure elements. In contrast with the previously proposed structural organisation, no signal peptide and only one transmembrane helix were predicted for the majority of RIF_As. Finally, we developed a strategy to obtain a reliable 3D-model for RIF_As. We generated 265 possible structures from 53 non-redundant sequences, from which clustering and quality assessments selected two models as the most representative for putative RIFIN protein structures.</p> <p>Conclusion</p> <p>First, comparative analyses of <it>RIFIN </it>repertoires in different clones of <it>P. falciparum </it>provide insights on evolutionary mechanisms shaping the multigene family. Secondly, we found that members of the two sub-families RIF_As and RIF_Bs have different structural organization in accordance with recent experimental results. Finally, representative models for RIF_As have an "Armadillo-like" fold which is known to promote protein-protein interactions in diverse contexts.</p

    Specific tagging of the egress-related osmiophilic bodies in the gametocytes of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gametocytes, the blood stages responsible for <it>Plasmodium falciparum </it>transmission, contain electron dense organelles, traditionally named osmiophilic bodies, that are believed to be involved in gamete egress from the host cell. In order to provide novel tools in the cellular and molecular studies of osmiophilic body biology, a <it>P. falciparum </it>transgenic line in which these organelles are specifically marked by a reporter protein was produced and characterized.</p> <p>Methodology</p> <p>A <it>P. falciparum </it>transgenic line expressing an 80-residue N-terminal fragment of the osmiophilic body protein Pfg377 fused to the reporter protein DsRed, under the control of <it>pfg377 </it>upstream and downstream regulatory regions, was produced.</p> <p>Results</p> <p>The transgenic fusion protein is expressed at the appropriate time and stage of sexual differentiation and is trafficked to osmiophilic bodies as the endogenous Pfg377 protein. These results indicate that a relatively small N-terminal portion of Pfg377 is sufficient to target the DsRed reporter to the gametocyte osmiophilic bodies.</p> <p>Conclusions</p> <p>This is the first identification of a <it>P. falciparum </it>aminoacid sequence able to mediate trafficking to such organelles. To fluorescently tag such poorly characterized organelles opens novel avenues in cellular and imaging studies on their biogenesis and on their role in gamete egress.</p

    Gametocytes of the Malaria Parasite Plasmodium falciparum Interact With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors

    Get PDF
    The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages

    Discovering new transmission-blocking antimalarial compounds : challenges and opportunities

    Get PDF
    The ability to target human-mosquito parasite transmission challenges global malaria elimination. However, it is not obvious what a transmission-blocking drug will look like; should it 1) target only parasite transmission stages; 2) be combined with a partner drug killing the pathogenic asexual stages or 3) kill both the sexual and asexual blood stages, preferably displaying polypharmacology. The development of transmission-blocking anti-malarials requires objective analyses of the current strategies. Here, pertinent issues and unanswered questions regarding the target candidate profile of a transmission-blocking compound, and its role in malaria elimination strategies are highlighted and novel perspectives proposed. The essential role of a test cascade that integrates screening and validation strategies to identify next generation transmission-blocking anti-malarials is emphasised.Koen Dechering (TROPIQ, The Netherlands), Francesco Silvestrini (Istituto Superiore di Sanità, Rome, Italy), Sarah D’Alessandro and Donatella Taramelli (University of Milan, Italy), Robert Sauerwein (University of Nijmegen, The Netherlands) and Omar Vandal (The Bill & Melinda Gates Foundation) are acknowledged for their contributions towards the screening cascade, which they developed in the course of the Bill and Melinda Gates Foundation Project OPP1040394 ‘Gametocyte Assays for Malaria (GAM) for novel transmission blocking drugs’, coordinated by PA. The South African Transmission-blocking Consortium is funded by the Medical Research Council of South Africa as a Strategic Health Innovation Partnership (MRC SHIP) project.http://www.journals.elsevier.com/trends-in-parasitology2017-09-30hb2016Biochemistr

    Real-time PCR assays for detection and quantification of early P. falciparum gametocyte stages

    Get PDF
    Introduction The use of reverse transcription, quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. A full understanding how the parasite adjusts its transmission in response to varying in-host environmental conditions during natural infections requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that are specific for detection and quantification of early-stage gametocytes of P. falciparum. Methods The assays are based on expression of known early gametocyte genes (pfpeg4, pfg27, pfge1, pfge3 and pfgexp5). The specificity of the qRT-PCR assays was tested using purified stage II and stage V gametocytes. These validated assays were used with qRT-PCR assays targeting late stage (pfs25) and all-stage (pfs16) gametocyte-specific transcripts to quantify gametocytes in natural P. falciparum infections and in a controlled human clinical infection study. Results The relative expression of pfpeg4, pfg27 and pfge3, but not of pfge1 and pfgexp5, was significantly higher in purified stage II compared to stage V gametocytes, indicating early gametocyte specificity. In natural infections, 71.2% of individuals had both early and late gametocyte transcripts (pfpeg4/pfg27 plus pfs25), 12.6% harboured only early gametocytes transcripts (pfpeg4/pfg27), and 15.2% had only late gametocytes transcripts (pfs25). In natural infections, the limit of detection was equivalent to 190 and 390 gametocytes/mL blood for pfpeg4 and pfg27, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection, demonstrating the specificity of the assays. Conclusion The pfpeg4 and pfg27 qRT-PCR assays can be used specifically to quantify circulating immature gametocytes. Quantification of early gametocytes will improve understanding of epidemiological processes that modulate P. falciparum transmission and enhance the evaluation of transmission blocking interventions

    Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance

    Get PDF
    Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation
    • …
    corecore