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Ned‑19 inhibition of parasite growth 
and multiplication suggests a role for NAADP 
mediated signalling in the asexual development 
of Plasmodium falciparum
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and Antonio Filippini3*

Abstract 

Background:  Although malaria is a preventable and curable human disease, millions of people risk to be infected by 
the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial 
drugs. Ca2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable 
target for the development of new drugs.

Results:  This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine 
dinucleotide phosphate (NAADP)-induced Ca2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of 
this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite 
from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated 
schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca2+ oscillations in ring and trophozoite stage 
parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca2+ levels.

Conclusions:  This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. 
falciparum. The observation that Ned-19 inhibits spontaneous Ca2+ oscillations suggests a potential role of NAADP in 
regulating Ca2+ signalling of P. falciparum.

Keywords:  Ned-19, NAADP, Malaria, Calcium signalling, Plasmodium falciparum, NAADP receptor, Antimalarial drugs, 
P. falciparum development
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Background
With 3.3 billion of people at risk to be infected and an 
estimated death toll of 429,000 in 2015 [1] malaria 
remains a great threat in tropical countries. Artemisinin 
combination therapies, although highly effective, have 
met with the development of parasite resistance in recent 

years, exacerbating the need for the identification of new 
anti-malarial drugs [2].

In Plasmodium falciparum, Ca2+ signalling regulates 
different physiological processes involved in the life cycle 
of parasite, such as erythrocyte invasion [3, 4], merozo-
ite egress from the infected erythrocyte [5] and parasite 
development [6]. As well as in higher eukaryotic cells, 
different Ca2+ stores have been found in Plasmodium: 
endoplasmic reticulum, acidocalcisomes, mitochondria 
and the digestive vacuole. Acidocalcisomes are acidic 
organelles rich in Ca2+ and other cations bound to phos-
phate polymers. A Ca2+-ATPase, a bafilomycin-sensitive 
vacuolar V-H+-ATPase, a V-H+-PPase and a Ca2+–H+ 
antiporter localize on the membrane of these organelles, 
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regulating Ca2+ balance [7]. It has been proposed that 
another acidic organelle of P. falciparum, the food vac-
uole, could be a Ca2+ store sensitive to thapsigargin, 
bafilomycin and NH4Cl [8]. Ca2+ homeostasis in Plas-
modium is mainly regulated by two Ca2+-ATPase, the 
thapsigargin-insensitive PfATP4 [9] and the thapsigar-
gin-sensitive sarco/endoplasmic reticulum Ca2+-ATPase 
(SERCA) orthologue PfATP6 [10]. Scheibel and co-work-
ers showed that both Ca2+ and calmodulin antagonists 
inhibit the growth of P. falciparum [11]. Moreover, the 
identification of SERCA as a target of artemisinins [10] 
highlights the crucial role of Ca2+ signalling in the life 
cycle of the parasite.

In higher eukaryotic cells, different intracellular second 
messengers finely regulate the spatio-temporal fluctua-
tion of cytosolic Ca2+ concentration, mobilizing calcium 
from different intracellular stores. Inositol 1,4,5-bispho-
sphate (IP3) [12], cyclic ADP-ribose (cADPR) [13] and 
nicotinic acid adenine dinucleotide phosphate (NAADP) 
[14] have been so far identified as Ca2+-mobilizing sec-
ond messengers in higher eukaryotic cells. The second 
messenger NAADP was described for the first time as a 
potent Ca2+ mobilizing agent in sea urchin eggs [14] and 
subsequently in ascidian and starfish oocytes [15, 16], in 
plants [17] and in higher eukaryotic cells [18–21], sug-
gesting a highly conserved feature in evolution for this 
molecule.

In Apicomplexa, second messengers involved in Ca2+ 
mobilization from intracellular organelles have been 
poorly investigated. At present only a few works have 
investigated the role of IP3 and cADPR in Ca2+ release in 
P. falciparum [22–24] and none focused on NAADP, pos-
sibly for the absence in the parasite genome of sequences 
homologous to the putative two pore channels (TPCs) 
NAADP-receptor. Recently, Ned-19 has been identified 
by virtual screening as a specific inhibitor of NAADP-
induced calcium signalling in sea urchin eggs and pancre-
atic beta cells, and was shown to bind NAADP receptors 
as a fluorescent probe [25]. Subsequently, Ned-19 medi-
ated Ca2+ signalling inhibition and its biological effects 
have been reported in different mammalian cells. Ned-
19 has been shown to inhibit histamine-induced secre-
tion of von Willebrand factor (vWF) in endothelial cells 
[20], endothelin-1 (ET-1)-induced contraction of smooth 
muscle cells [26], NAADP-induced acrosome reaction in 
mammalian spermatozoa [27] and exocytosis of cytolytic 
granules in cytotoxic T Lymphocytes and VEGF-induced 
neoangiogenesis [28, 29].

The aim of this study was to investigate the effect of 
Ned-19 on the blood stage development of P. falciparum. 
Results show for the first time that Ned-19 specifically 
impairs both the growth and the ability to transform into 
multinucleate schizonts of the asexual trophozoite stages, 

suggesting a crucial role of NAADP in life cycle progres-
sion. This work also shows that Ned-19 inhibits spon-
taneous Ca2+ oscillations in early ring and trophozoite 
stages, which also suggests an important role of NAADP 
in Ca2+ homeostasis of P. falciparum.

Methods
Plasmodium falciparum parasites and cultures
Parasites from clone 3D7 [30] were cultured in 0+ human 
red blood cells at 5% haematocrit in RPMI 1640 plus 
hypoxanthine 50 mg/mL, HEPES 25 mM, 0.225% sodium 
bicarbonate and 10  mg/mL gentamicin, supplemented 
with 10% heat inactivated human serum. Parasites were 
kept at 37  °C, in a 2% O2, 5% CO2 and 93% N2 atmos-
phere. Percoll cushion and sorbitol treatment for parasite 
synchronization were performed as described [31, 32] 
previously. In parasite synchronization, sorbitol treat-
ment of newly invaded parasites from Percoll purified 
schizonts was performed 3  h after Percoll treatment to 
obtain a parasite synchronization window of maximum 
3  h. For gametocyte production, asynchronous para-
sites were grown to high parasitaemia (>8%) and cul-
ture medium was doubled at this point. The day after, 
50  mM  N-acetylglucosamine was added to medium 
and maintained for 3  days, until no asexual parasites 
were detected in the culture. Stage II gametocytes were 
detected 48 h after the addition of N-acetylglucosamine, 
while mature stage V appeared from 9  days after the 
treatment.

Parasitaemia was measured through Giemsa staining of 
culture blood smears (counting of at least 2000 RBCs) or 
FACS using CYBRGreen staining as previously described 
(counting of at least 50,000 cells) [33]. FACSAria I (BD 
Biosciences, Erembodegem, Belgium) equipped with 
three lasers (488, 635 and 407 nm violet solid state laser) 
was used to determine parasitaemia to a precision of 
0.1%. The results were analyzed by BD FACSDiva Soft-
ware version 6.1.3 (BD Biosciences).

Ned‑19 and Ned‑20 treatments
Ned-19 (Tocris bioscience) was resuspended in a stock 
solution of sterile dimethyl sulfoxide (DMSO) at 100 mM 
and kept at −20  °C until added to the Plasmodium cul-
tures at the specified concentrations. In the case of 
Ned-20 the stock solution was kindly provided by Grant 
Churchill (Oxford University) at 10  mM and kept at 
−20  °C until use. Control cultures were incubated with 
a DMSO concentration equivalent to that of the treated 
cultures. Differences in parasitaemia between treated and 
untreated cultures were evaluated through Student’s t 
test.
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Microscopy
Parasite cultures were incubated with 200  μM Ned-19 
and 1  μM Lysotracker Green DND-26 (ThermoFisher 
Scientific) for 30 min at 37 °C in agitation and observed 
with a fluorescence microscope. A Zeiss Observer.Z1 
inverted microscope was used to visualize live samples. 
Images were acquired using a Zeiss AxioCam MRm Rev. 
3 FireWire camera through a Zeiss C-Apochromat 63x/1, 
20 objective. Filters used to detect fluorescence were EX: 
365–395, EM: 445–450 (Ned-19) and EX: 440–470, EM: 
525–550 (Lysotracker Green DND-26). Giemsa-stained 
smears were examined to confirm stages of the synchro-
nized parasites: proportions >90% of trophozoites, schiz-
onts and ring forms were, respectively, observed at 32, 46 
and 48 h after synchronization.

Electron microscopy
Parasite culture samples enriched in infected red blood 
cells by MACS (Magnetic-activated cell sorting) were 
fixed overnight in cold 2.5% glutaraldehyde in 0.1  M 
cacodylate buffer, postfixed in 2% osmium tetroxide for 
2 h and treated for 30 min with 1% tannic acid in 0.05 M 
cacodylate buffer. Pellets were then dehydrated in etha-
nol and processed for Epon embedding. Ultrathin sec-
tions were contrasted in lead hydroxide and analyzed in a 
Hitachi 7000 transmission electron microscope.

Calcium imaging
In Ca2+ imaging experiments, protocol was adapted from 
[6], using the ratiometric Fura-2-AM as calcium reporter. 
Samples from cultures at high parasitaemia (5–10%) of 
the desired parasite stage were generated through para-
site synchronization as follows: for early rings, parasites 
were harvested 50  h after the initial Percoll treatment, 
while for early trophozoites parasites were harvested 26 h 
after Percoll treatment. Cultures where then washed in 
BSA− medium for Ca2+ imaging (RPMI 1640 medium 
without phenol red supplemented with 25  mM HEPES, 
24  mM sodium bicarbonate, 0.5  g/L l-glutamine and 
50  mg/L hypoxanthine) and resuspended at 5% haema-
tocrit in loading medium [BSA− medium supplemented 
with 1:100 PowerLoad (ThermoFisher Scientific)] with 
3 μM Fura-2-AM (ThermoFisher Scientific) at 37  °C for 
150 min in agitation. Loading medium was then washed 
away and cells were resuspended at 2.5% haematocrit in 
BSA+ medium [BSA− medium supplemented with 0.5% 
Albumax I and 25 mg/mL gentamicin (Sigma)]. Ned-19 
100  μM or 0.1% DMSO was added to 1  mL of this cell 
suspension. This was plated in glass-bottomed 30  mm 
dishes previously coated with poly-l-lysine and incu-
bated in a 2% O2, 5% CO2 and 93% N2 atmosphere for 
45 min. Unbound cells were washed by gently rinsing the 
surface of the plate and substituting supernatant with 

BSA+ medium with Ned-19 or DMSO. Medium vol-
ume was then adjusted to 1 mL of BSA+ with Ned-19 or 
DMSO. This treatment resulted in cells treated with Ned-
19 or DMSO for at least 45  min prior to the beginning 
of measurements, and the Ned-19 and DMSO treatments 
being kept during calcium imaging.

Ca2+ mobilization was measured in presence or 
absence of Ned-19. Plates with Fura-2-loaded cells were 
placed into a culture chamber at 37  °C on the stage of 
an inverted fluorescence microscope (Nikon, TE2000E), 
connected to a cooled CCD camera (512B Cascade, 
Princeton Instruments, AZ). Samples were illuminated 
alternately at 340 and 380  nm using a random access 
monochromator (Photon Technology International, NJ) 
and emission was detected using a 510 nm emission filter. 
Images (1 set of emission at 340 and 380 nm every 1.5 s) 
were acquired using Metafluor software (Universal Imag-
ing Corporation, Downingtown, PA).

Images were analysed by generating square 4 × 4 mm 
ROIs (region of interest) encompassing a single parasite 
and recording the intensity of the emission for the ROI 
at 340 and 380 nm. Background was normalized for each 
ROI using a ROI the size of the full image, and ratio (R) 
was calculated as F(340)/F(380) for each ROI and time-
point, obtaining time-courses for each ROI. R values 
were then normalized as R/Rmin−1.

OCTAVE free software with the script findpeaksfit.m 
by T.C. O’Haver [34] was used to identify and measure 
height of peaks, given as R/Rmin−1 values. Oscillation 
series were subdivided into fragments of 100 s each and 
script was run with settings as follows: x, y, SlopeThresh-
old = 0.0005, AmpThreshold = 0, smoothwide = 3, peak-
group =  3, smoothtype =  3, peakshape =  1, extra =  0, 
NumTrials  =  0, autozero  =  1, fixedparameters  =  0, 
plots  =  0. Differences between the height of peaks in 
DMSO and Ned-19 treated parasites were evaluated 
through unpaired Student’s t test analysis. For DMSO 
treated rings, N (number of time-courses) =  6, n (total 
number of peaks detected)  =  622. For Ned-19 treated 
rings, N =  6, n =  265. In the case of trophozoites, for 
DMSO treated parasites N  =  8, n  =  349, for Ned-19 
treated parasites N = 3, n = 150.

Results
Ned‑19 inhibits the asexual development of Plasmodium 
falciparum
To determine whether the highly selective NAADP 
antagonist Ned-19 affected the asexual cycle of P. falci-
parum, the effects of this compound and of its inactive 
analogue Ned-20, unable to inhibit NAADP-mediated 
Ca2+ release in other organisms [35], were evaluated on 
synchronized early asexual stages of parasite clone 3D7, 
which were incubated for 48 h in the presence of Ned-19, 
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Ned-20 or DMSO (100 μM). The parasitaemia of the cul-
ture incubated with Ned-19 showed a fivefold reduction 
compared to the DMSO-treated parasites. In contrast, 

the Ned-20 treated culture did not show a significant 
reduction in parasitaemia, supporting the specificity of 
Ned-19 in impairing the parasite asexual growth (Fig. 1b). 
Additional experiments showed that Ned-19 impairs par-
asite growth in a dose-dependent manner (Fig. 1c).

Ned‑19 blocks development of early trophozoites 
and prevents schizont maturation
To pinpoint the stage(s) of the parasite life cycle affected 
by Ned-19, a time course spanning one parasite asexual 
cycle was performed. A tightly synchronized culture 
of newly invaded ring stage parasites (synchronization 
window of 3  h) was produced and treated as described 
in Fig.  2. A control subculture was exposed to DMSO 
(subculture 1), one was treated with 100 μM Ned-19 for 
the entire cycle (subculture 2), one for the initial 8 h only 
(subculture 3), and in five additional subcultures (4–8) 
Ned-19 was added at 8  h intervals, at 8, 16, 24, 32 and 
40 h of the parasite asexual development.

Parasite numbers and morphology were determined 
in Giemsa stained smears at all time points of all subcul-
tures. Results indicated that presence of Ned-19 limited 
to the first 8  h after parasite invasion, at the very early 
ring stage parasites (subculture 3), or after 40  h, at the 
late schizont stage (subculture 8), did not affect the com-
pletion of the life cycle and the invasion of new red blood 
cells by the merozoites produced in schizogony. In con-
trast, parasite development was affected if Ned-19 was 
present between 8 and 40  h post-invasion. Timing and 
length of Ned-19 exposure were associated to some dif-
ferences in the effects on the treated parasites. When ring 
stage parasites were exposed to Ned-19 from 0, 8, or 16 h 
post-invasion (subcultures 2, 4 and 5), their development 
did not progress beyond the early trophozoite stages, 
which accumulated and were observable for the remain-
ing 48  h. When Ned-19 was added later in the asexual 
cycle, from 24 or 32  h of development (subcultures 6 
and 7), the treated early trophozoite stages did not pro-
gress in development and accumulated as early schizonts. 
In subculture 7 a decrease in parasite number was also 
observed, indicating that incubation of Ned-19 with late 
trophozoite stages led to parasite cell disruption, unlike it 
was observed when Ned-19 was incubated with the ring 
stage parasites.

This experiment indicates that short-term exposure of 
parasites at the very early phase of the asexual cycle to 
Ned-19 is not sufficient to block development and, later 
in the cycle, Ned-19 does not directly affect schizogony 
and merozoite reinvasion. Ned-19 inhibitory activity is 
instead concentrated in the trophic part of the asexual 
cycle and in the development of the trophozoite into the 
schizont, suggesting that Ned-19 affects distinct cellular 
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Fig. 1  Ned-19 specific blockage of P. falciparum asexual growth. a 
Structure of Ned-19 and of its inactive analogue Ned-20, adapted 
from Rosen et al. b Synchronous early ring stage parasites (initial 
parasitaemia 0.16%) were cultured for 48 h in the presence of 100 μM 
concentration of the indicated compounds. At the end of the incuba‑
tion, parasitaemias were measured through Giemsa-stained prepara‑
tions. Parasitaemia of the DMSO treated culture (1.08%) was set as 1. 
N = 3. ***p < 0.001. Error bar SEM. c Late asexual parasites (24 h post 
invasion, initial parasitaemia 1%) were cultured with the indicated 
concentrations of Ned-19 for 24 h. Parasitaemia was then measured 
through FACS counting of at least 50.000 cells per sample. N = 2. 
*p < 0.05; ***p < 0.001; ****p < 0.0001. Error bar range/2
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Fig. 2  Ned-19 activity on different stages of the P. falciparum asexual cycle. Synchronized ring stage parasites (initial parasitaemia 1.4%) were used 
to yield subcultures, numbered 1–8, which were incubated with DMSO control (blue line) or exposed to 100 μM Ned-19 (red line) at different times 
of the parasite asexual cycle. a Stages of the parasite asexual cycle. Black arrows indicate times at which the cultures were sampled. b Histograms 
showing parasitaemia and distribution of the different parasite stages for the cultures in each time-point. ER early rings, LR late rings, ET early 
trophozoites, LT late trophozoites, ES early schizonts, LS late schizonts. A representative sample of these forms is shown in Additional file 2: Figure S2
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processes in the ring and in the trophozoite stages of the 
asexual parasite.

To pinpoint the time at which Ned-19 blocks late asex-
ual development, tightly synchronized late trophozoite 
stages (32  h after synchronization) were treated with 
100  μM Ned-19 at different times spanning a period 
from 12 h before to 2 h after schizogony, which occurred 
44  h after invasion in the untreated control culture 
(Fig.  3). Parasite morphology and the number of ring 
stages resulting from successful merozoite reinvasion 
were measured. The experiment showed that Ned-19 
treatment at 12, 10, 8 and 6 h before schizogony resulted 
in a low number of rings in the next cycle compared to 
the untreated cultures. This effect was less pronounced, 
but statistically significant, in the cultures treated 4 and 
2  h before schizogony, whereas cultures in which Ned-
19 was added at the moment of schizogony showed no 
difference compared to the DMSO-treated controls. 
The partial effect observed at the time points immedi-
ately preceding schizogony may however be explained 
by the fact that the 3  h synchronization window used 
in this experiment would allow some of the parasites 
to reach the Ned-19 insensitive schizont stage at these 
time points. This experiment in conclusion confirms 
that Ned-19 alters the transition from late trophozoite 
to early schizont and the subsequent parasite maturation 
into a mature schizont, while it does not affect egress of 
the merozoites or their ability to reinvade uninfected red 
blood cells.

To investigate effects of Ned-19 treatment on parasite 
morphology, late asexual parasites were treated with 
62.5 or 125 μM Ned-19 and examined through Giemsa 

staining and electron microscopy after 6 h of incubation. 
Examination by light microscopy revealed an aberrant 
morphology of the late parasite stages, characterized by 
presence of unstained vacuoles or nuclei with abnormal 
morphology. These features were present in 48 and 60% 
of the parasites in the 62.5  μM and the 125  μM treat-
ments, respectively (Additional file 1: Figure S1).

Ned‑19 localizes to acidic compartments in P. falciparum
Ned-19 is a fluorescent compound and this property 
has been exploited to label and subcellularly localize the 
NAADP receptors [25]. To investigate the presence and 
subcellular localization of putative NAADP receptors in 
P. falciparum, live parasites incubated with 200 μM Ned-
19 were examined by fluorescence microscopy. Results 
showed that Ned-19 fluorescence exhibited a diffuse 
pattern in the different stages of the asexual cycle and in 
gametocytes (Fig. 4a).

As Ned-19 localizes to acidic lysosome-like orga-
nelles in other cell types, Lysotracker Green DND-26, a 
dye marking membranes of acidic organelles, was used 
in co-localization experiments with Ned-19 (Fig.  4b, c). 
In this experiment a similar subcellular pattern of the 
Lysotracker and the Ned-19 fluorescence signals in both 
asexual and sexual parasites was observed, suggesting 
that Ned-19 accumulates in Lysotracker-positive com-
partments in P. falciparum. This may lead to speculate 
that putative parasite NAADP receptor(s) may localize 
in acidic compartments within the parasite, similarly to 
other organisms [36].
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Fig. 3  Ned-19 activity on the late phase of the asexual cycle of P. falciparum. Left asexual P. falciparum cultures were synchronized (initial parasitae‑
mia 1.2%) and trophozoites at 32 h post invasion were incubated with DMSO (blue line) or 100 μM Ned-19 (red line) at the indicated time-points. 
Right parasitaemia and asexual stages of the cultures 2 h after merozoite egress (determined in the DMSO treated culture). N = 2. *p < 0.05; 
**p < 0.01. Error bar range/2



Page 7 of 11Suárez‑Cortés et al. Malar J  (2017) 16:366 

Fig. 4  Ned-19 colocalizes with Lysotracker in asexual and sexual parasites. a Parasites stained with 200 μM Ned-19. b Parasites stained with 1 μM 
Lysotracker. c Parasites stained with 200 μM Ned-19 and 1 μM Lysotracker. BF bright field. Scale bar 5 μm
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Ned‑19 inhibits spontaneous Ca2+ oscillations in early ring 
and early trophozoite stages
To determine whether Ned-19 affects Ca2+ homeostasis 
in P. falciparum, spontaneous oscillations in intracellu-
lar Ca2+ concentration [6, 37] were measured incubat-
ing synchronized early ring and early trophozoite stages 
loaded with the calcium indicator Fura-2-AM in the 
presence or absence of 100  μM Ned-19. Oscillations in 
the intensity of the fluorescent signals were observed in 
treated and untreated parasites and the respective aver-
age peak heights were calculated, with values normalized 
to the minimum value in each measurement (Fig. 5a). R/
Rmin−1 for untreated early rings and trophozoites were 
0.0202 (SEM 4.64 × 10−4) and 0.0267 (SEM 1.02 × 10−3) 
respectively, whereas in the Ned-19 treated parasites 
values were 0.01526 (SEM 3.82  ×  10−4) and 0.02177 
(SEM 9.14 ×  10−4) for early rings and for early tropho-
zoites, respectively. The significantly smaller oscilla-
tions observed in the treated ring and trophozoite stages 
(p < 0.0001 and p = 0.0029, respectively) (Fig. 5b) indi-
cate that spontaneous oscillations in free Ca2+ concentra-
tion are affected by Ned-19, supporting a specific effect 
of Ned-19 in P. falciparum Ca2+ regulation.

Discussion
This study investigated for the first time the effect of the 
NAADP antagonist Ned-19 on P. falciparum develop-
ment, revealing that this compound inhibits the parasite 
asexual cycle and suggesting a potential role of NAADP 
in regulating P. falciparum Ca2+ signalling.

While the effects of inositol 1,4,5-bisphosphate (IP3)-
induced [22, 23], cyclic ADP-ribose (cADPR) and ATP-
induced [38] Ca2+ release have been previously described 
in P. falciparum [24] and in Toxoplasma gondii [39], the 
role of NAADP in this process and in parasite physiology 
has never been investigated in apicomplexan parasites. 
Moreover, the receptors involved in second messenger-
induced Ca2+ release are unknown, since the orthologue 
of both IP3 receptors (IP3Rs) and ryanodine receptors 
(RyRs) have not been identified and two pore channels 
(TPCs) NAADP-receptor homologous sequences have 
not been found in the genome of P. falciparum [40]. 
Results of the present work show that a highly specific 
inhibitor of NAADP-induced Ca2+ release (Ned-19) 
blocks the transition from early to late trophozoite stages 
and schizont maturation in P. falciparum, supporting the 
notion that Ca2+ signalling plays a crucial role in different 
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stages of P. falciparum asexual cycle. This supports previ-
ous findings [6] describing a pivotal role of Ca2+ signal-
ling in the development of P. falciparum. In that study, 
the stage-specific spontaneous Ca2+ oscillations in the 
intra-erythrocytic stages of P. falciparum were inhib-
ited by a specific inhibitor of IP3 (2-APB), resulting in 
developmental defects and leading to parasite death [6]. 
Interestingly, in that report and in the present work, the 
decrease in Ca2+ oscillations caused by 2-APB and Ned-
19 at the early ring stage was not sufficient to block para-
site development, while ability to affect Ca2+ oscillations 
later at the trophozoite stage was in both cases associ-
ated to an inhibitory effect on the growth of these para-
sites. The ability of Ca2+ signalling in regulating cellular 
response in different stages of parasite life cycle relies 
on a family of Ca2+-dependent protein kinases. Among 
these, PfCDPK1 (calcium-dependent protein kinase-1) is 
expressed during the intraerythrocytic schizogony and in 
the sporozoite stage, and it is crucial for the viability of 
P. falciparum. Kato and co-workers identified purkalfam-
ine as an inhibitor of PfCDPK1 able to block parasite 
development at the late schizont stage [41]. It is known 
that CDPK1 is crucial also in the sexual life cycle stages 
of Plasmodium berghei, regulating zygote development 
[42]. Other studies showed that another Ca2+-dependent 
protein kinase, PfCDPK5, controls parasite egress from 
erythrocytes [43].

These data altogether highlight the potential impact 
of Ca2+ signalling antagonists as new antimalarial 
drugs able to block different stages of the life cycle of 
P. falciparum. Accordingly, different research groups 
recently focused their efforts in performing large scale 
drug screening to identify new compounds able to tar-
get Ca2+-dependent protein kinases or more generally 
Ca2+-signalling in Apicomplexa [44–46]. In this context, 
the results of this study introduce NAADP signalling as a 
new potential target for the development of drugs able to 
impair Ca2+ homeostasis in P. falciparum.

Spontaneous Ca2+ oscillations have been poorly inves-
tigated in P. falciparum. It has been shown that a specific 
inhibitor of IP3 (2-APB) was able to block Ca2+ oscilla-
tions in ring and trophozoite stages [6], while a selective 
melatonin receptor antagonist, luzindole, was able to 
inhibit spontaneous Ca2+ oscillations mainly in the ring 
stages of the parasite [37]. The result that Ned-19 affects 
Ca2+ oscillations in early rings and trophozoites sug-
gests that both NAADP and IP3 are involved in this pro-
cess. This result is consistent with the observations that 
NAADP induces Ca2+ oscillations in different eukaryotic 
cell types, from sea urchin eggs [19] to pancreatic acinar 
cells [47–49], through a two-pool mechanism involv-
ing both endoplasmic reticulum-independent NAADP-
sensitive stores and the endoplasmic reticulum IP3- and 

cADPR-sensitive stores [50, 51]. In this model, NAADP 
is crucial in priming Ca2+-induced Ca2+-Release from 
endoplasmic reticulum (CICR), through a mechanism 
of overloading and spontaneous Ca2+ release from these 
stores [50].

Besides using Ned-19 as a specific inhibitor of NAADP 
signalling, this compound was used to fluorescently tag 
the NAADP receptor in living cells [25]. These experi-
ments showed the co-localization of the Ned-19 and 
the Lysotracker fluorescent signals in different stages of 
the life cycle of P. falciparum, suggesting that yet to be 
identified NAADP-receptors may localize on acidic com-
partments also in P. falciparum and possibly in Apicom-
plexa, similarly to several mammalian cell types [18, 20]. 
As however different acidic organelles are labelled by 
Lysotracker dye in P. falciparum (acidocalcisomes, diges-
tive vacuole and lysosomes), further experiments are 
needed to identity the Ned-19 positive organelles.

Conclusion
The ability of the specific NAADP inhibitor Ned-19 
to block P. falciparum life cycle progression from the 
trophozoite to the late asexual stages and to affect spon-
taneous oscillations in the parasite intracellular Ca2+ 
concentration constitute the first evidence to suggest the 
presence of the regulatory molecule NAADP and its role 
in Ca2+ homeostasis in the malaria parasites and more 
generally in Apicomplexa. The lack of predicted ortho-
logue NAADP receptors in the P. falciparum genome 
suggests that such putative receptors and the NAADP 
mediated regulatory mechanism(s) in the malaria para-
sites may considerably differ from those described in dis-
tant organisms. This raises the possibility that these yet 
to be explored cellular mechanism(s) may be targeted 
with a high selectivity.
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