30 research outputs found

    Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress

    Get PDF
    Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.Fil: Sigaut, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bianchi, Micaela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Burdisso, Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Gastaldi, Laura Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentin

    Correlation of cellular traction forces and dissociation kinetics of adhesive protein zyxin revealed by multi-parametric live cell microscopy

    Get PDF
    Cells exert traction forces on the extracellular matrix to which they are adhered through the formation of focal adhesions. Spatial-temporal regulation of traction forces is crucial in cell adhesion, migration, cellular division, and remodeling of the extracellular matrix. By cultivating cells on polyacrylamide hydrogels of different stiffness we were able to investigate the effects of substrate stiffness on the generation of cellular traction forces by Traction Force Microscopy (TFM), and characterize the molecular dynamics of the focal adhesion protein zyxin by Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Recovery After Photobleaching (FRAP). As the rigidity of the substrate increases, we observed an increment of both, cellular traction generation and zyxin residence time at the focal adhesions, while its diffusion would not be altered. Moreover, we found a positive correlation between the traction forces exerted by cells and the residence time of zyxin at the substrate elasticities studied. We found that this correlation persists at the subcellular level, even if there is no variation in substrate stiffness, revealing that focal adhesions that exert greater traction present longer residence time for zyxin, i.e., zyxin protein has less probability to dissociate from the focal adhesion.Fil: Sigaut, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bianchi, Micaela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins

    Get PDF
    Research done in the last years strongly support the hypothesis that PIP aquaporin can form heterooligomeric assemblies, specially combining PIP2 monomers with PIP1 monomers. Nevertheless, the structural elements involved in the ruling of homo versus heterooligomeric organization are not completely elucidated. In this work we unveil some features of monomer-monomer interaction in Beta vulgaris PIP aquaporins. Our results show that while BvPIP2;2 is able to interact with BvPIP1;1, BvPIP2;1 shows no functional interaction. The lack of functional interaction between BvPIP2;1 and BvPIP1;1 was further corroborated by dose-response curves of water permeability due to aquaporin activity exposed to different acidic conditions. We also found that BvPIP2;1 is unable to translocate BvPIP1;1-ECFP from an intracellular position to the plasma membrane when co-expressed, as BvPIP2;2 does. Moreover we postulate that the first extracellular loop (loop A) of BvPIP2;1, could be relevant for the functional interaction with BvPIP1;1. Thus, we investigate BvPIP2;1 loop A at an atomic level by Molecular Dynamics Simulation (MDS) and by direct mutagenesis. We found that, within the tetramer, each loop A presents a dissimilar behavior. Besides, BvPIP2;1 loop A mutants restore functional interaction with BvPIP1;1. This work is a contribution to unravel how PIP2 and PIP1 interact to form functional heterooligomeric assemblies. We postulate that BvPIP2;1 loop A is relevant for the lack of functional interaction with BvPIP1;1 and that the monomer composition of PIP assemblies determines their functional properties.Fil: Jozefkowicz, Cintia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Rosi, Pablo Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina;Fil: Sigaut, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Amodeo, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

    Layer-by-Layer Assembled Microgels Can Combine Conflicting Properties: Switchable Stiffness and Wettability without Affecting Permeability

    Get PDF
    Responsive interfacial architectures of practical interest commonly require the combination of conflicting properties in terms of their demand upon material structure. Switchable stiffness, wettability, and permeability, key features for tissue engineering applications, are in fact known to be exclusively interdependent. Here, we present a nanoarchitectonic approach that decouples these divergent properties by the use of thermoresponsive microgels as building blocks for the construction of three-dimensional arrays of interconnected pores. Layer-by-layer assembled poly(N-isopropylacrylamide-co-methacrylic acid) microgel films were found to exhibit an increase in hydrophobicity, stiffness, and adhesion properties upon switching the temperature from below to above the lower critical solution temperature, whereas the permeability of redox probes through the film remained unchanged. Our findings indicate that the switch in hydrophilicity and nanomechanical properties undergone by the microgels does not compromise the porosity of the film, thus allowing the free diffusion of redox probes through the polymer-free volume of the submicrometer pores. This novel approach for decoupling conflicting properties provides a strategic route for creating tailorable scaffolds with unforeseen functionalities.Fil: Maza, Eliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Cortez, María Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Díaz, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Bianchi, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Giussi, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Layer-by-Layer Assembled Microgels Can Combine Conflicting Properties: Switchable Stiffness and Wettability without Affecting Permeability

    Get PDF
    Responsive interfacial architectures of practical interest commonly require the combination of conflicting properties in terms of their demand upon material structure. Switchable stiffness, wettability, and permeability, key features for tissue engineering applications, are in fact known to be exclusively interdependent. Here, we present a nanoarchitectonic approach that decouples these divergent properties by the use of thermoresponsive microgels as building blocks for the construction of three-dimensional arrays of interconnected pores. Layer-by-layer assembled poly(N-isopropylacrylamide-co-methacrylic acid) microgel films were found to exhibit an increase in hydrophobicity, stiffness, and adhesion properties upon switching the temperature from below to above the lower critical solution temperature, whereas the permeability of redox probes through the film remained unchanged. Our findings indicate that the switch in hydrophilicity and nanomechanical properties undergone by the microgels does not compromise the porosity of the film, thus allowing the free diffusion of redox probes through the polymer-free volume of the submicrometer pores. This novel approach for decoupling conflicting properties provides a strategic route for creating tailorable scaffolds with unforeseen functionalities.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Highly-organized stacked multilayers: Via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes : Stratified supramolecular structures for (bio)electrochemical nanoarchitectonics

    Get PDF
    Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasConsejo Nacional de Investigaciones Científicas y Técnica

    Highly-organized stacked multilayers: Via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Stratified supramolecular structures for (bio)electrochemical nanoarchitectonics

    Get PDF
    Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.Fil: Cortez, María Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Lorenzo, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Marmisollé, Waldemar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Maza, Eliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Highly-organized stacked multilayers: Via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes : Stratified supramolecular structures for (bio)electrochemical nanoarchitectonics

    Get PDF
    Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasConsejo Nacional de Investigaciones Científicas y Técnica

    Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles

    Get PDF
    The possibility of combining more than one stimulus-responsive property into a single material holds interesting potential for the creation of adaptive devices to be used in diverse fields such as drug delivery, nanomedicine and tissue engineering. This paper describes a novel material based on thermo-responsive PNIPAm nanopillars with amplified surface properties through the incorporation of Fe3O4 nanoparticles. The incorporation of magnetic nanoparticles into the nanopillars, prepared via surface-initiated atom-transfer radical polymerization in anodized aluminum oxide templates, sharply increased their stiffness and hydrophobicity when increasing the temperature above the volume phase transition temperature. Furthermore, their magnetic response turned out to be proportional to the amount of the incorporated nanoparticles. The possibility of sharply increasing the stiffness with a temperature variation close to the human body temperature paves the way to the application of these substrates as "smart" scaffolds for cell culture. Additionally, the presence of superparamagnetic nanoparticles in the nanopillars offers the possibility of using these nanostructured systems for magnetic hyperthermia.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles

    Get PDF
    The possibility of combining more than one stimulus-responsive property into a single material holds interesting potential for the creation of adaptive devices to be used in diverse fields such as drug delivery, nanomedicine and tissue engineering. This paper describes a novel material based on thermo-responsive PNIPAm nanopillars with amplified surface properties through the incorporation of Fe3O4 nanoparticles. The incorporation of magnetic nanoparticles into the nanopillars, prepared via surface-initiated atom-transfer radical polymerization in anodized aluminum oxide templates, sharply increased their stiffness and hydrophobicity when increasing the temperature above the volume phase transition temperature. Furthermore, their magnetic response turned out to be proportional to the amount of the incorporated nanoparticles. The possibility of sharply increasing the stiffness with a temperature variation close to the human body temperature paves the way to the application of these substrates as "smart" scaffolds for cell culture. Additionally, the presence of superparamagnetic nanoparticles in the nanopillars offers the possibility of using these nanostructured systems for magnetic hyperthermia.Fil: Giussi, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Alarcón, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Hernandez, Rebeca. Consejo Superior de Investigaciones Científicas; España. Instituto en Ciencia y Tecnología de Polímeros; EspañaFil: Real, Rafael Perez del. Consejo Superior de Investigaciones Científicas; EspañaFil: Vázquez, Manuel. Consejo Superior de Investigaciones Científicas; EspañaFil: Mijangos Ugarte, Carmen. Instituto en Ciencia y Tecnología de Polímeros; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Cortez, María Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin
    corecore