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ABSTRACT 

 

Supramolecular self-assembly is of paramount importance for the development of novel functional 

materials with molecular-level feature control. In particular, the interest in creating well-defined 

stratified multilayers through simple methods using readily available building blocks is motivated by a 

multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological 

applications. Herein, we report on the facile preparation and application of highly organized stacked 

multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte 

multilayers with high degree of stratification of the internal structure were constructed through 

consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a 

structure-directing agent. We show that multilayers form well-defined lamellar 

hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity 

characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the 

highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as 

hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed 

redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and 

glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the 

presence of glucose was demonstrated to occur inside the stratified multilayer.  

 

 

Introduction 

 

Interfacial supramolecular assemblies generated in layer-by-layer (LbL) fashion have sparked great 

interest owing to their potential applications in a wide range of research fields.
1–5

 An important 

cornerstone for the construction of multicomponent interfacial architectures is the development of 

methods for integrating molecular building blocks into well-defined organized assemblies.
6–9

 Research 

efforts on this matter are often referred to as "nanoarchitectonics", a term popularized by Ariga and co-

workers.
10–17

 It is now widely accepted that the LbL of polyelectrolytes represents a valuable technique 

for the fabrication of thin functional films of composition controlled at the nanometer scale. However, 

the interpenetration of successively adsorbed polyelectrolyte layers  that is responsible for altering the 

local structure of the multilayer can be described as a scrambled egg polyelectrolyte complex rather 

than a truly layered, stratified film.
18

 More specifically, no Bragg reflections appear in X-ray 
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reflectograms of such "multilayered" films, except when some special polyelectrolytes capable of 

forming lyotropic mesophases are being used.
19

 In these exceptional cases, these special 

polyelectrolytes are responsible for the formation of an ordered film structure extending over long 

distances. On the other hand, Bragg peaks may also appear in X-ray reflectograms when the organic 

polyanion is replaced by negatively charged inorganic platelets such as clay or titanate platelets.
20–25

 

Up to date, only few heterosupramolecular systems have demonstrated perfect assemblies indicated by 

the presence of high-order Bragg reflections: CdS in polyelectrolytes,
26

 CdTe in phospholipids,
27

 rigid 

cellulose crystals and flexible polyallylamine,
28

 and gold nanoparticles integrated in spin-assisted LbL 

assemblies.
29

 Regarding this latter example, it is necessary to consider that despite valuable research 

efforts to obtain stratified polyelectrolyte multilayers with organized internal structure via spray or SA-

LbL deposition,
26,30–32

 the main strategy to control the stratification of polyelectrolyte multilayers still 

relies on limiting the interdiffusion of layers by introducing inorganic
33,34

 or cross-linked “buffer” 

layers.
35–37

 Very recently, Zapotoczny and co-workers demonstrated the creation of polyelectrolyte 

multilayers with stratification of the internal structure through assembly of statistical amphiphilic 

copolyelectrolytes of opposite charges.
38

 In this regard, the integration of amphiphilic/micellar building 

blocks in LbL assemblies has been explored by several groups and facilitated the incorporation of small 

water-insoluble molecules into the interfacial architecture.
39–43

 These research activities, in turn, led to 

a general, versatile, and robust route to bringing hydrophobic domains into thin films processed in 

aqueous solutions. However, the stratification of polyelectrolyte multilayers displaying well-organized 

hydrophobic domains derived from the assembly of micellar architectures remains elusive.  

 

In a similar vein, multilayer assemblies containing redox-active enzymes are also of great interest 

within the scientific community as they are versatile architectures to create bioelectrochemical sensors 

or even biomimetic signal-transfer systems.
44–46

 A further challenge in the growing area of 

“nanoarchitectonics” is the creation of new methodologies for the spontaneous assembly of molecular 

building blocks onto solid surfaces in predetermined arrangements for the fabrication of functional 3D-

assemblies.
47–49

 This aspect is particularly relevant if we consider that well-organized, multilayered, 

stacked nanoarchitectures - like lipid membranes - are a common principle in many biological systems 

to spatially organize processes and compartmentalize molecules.   

 

Recently, Jeuken and his collaborators
50

 reported the construction of multilayers of membrane enzymes 

in a native-like lipid environment using the LbL assembly of bacterial membrane extracts on gold 

electrodes. The potential of lipid-containing polyelectrolyte multilayers to mimic complex multilayer 

membrane assemblies is remarkable,
51–53

 yet the development of consistent methodologies to attain 

such well-organized nanoassemblies has been limited. Only few model systems has been described to 

consistently show the existence of well-defined, stratified lipid domains. On the other hand, despite the 

versatility of lipids to offer different amphiphilicity as well as diversity of head and tail chemistry, they 

are relatively expensive and delicate building blocks and demand the formation of stable vesicles or 

extruded liposomes prior to their integration in the polyelectrolyte assembly.  With this background in 

mind, our motivation was to develop a simple, robust and reproducible strategy to build up stratified 

PEMs displaying functional features, including biological activity, in spatially addressed domains, 

without requiring the use of inorganic structuring agents, but retaining the ease and generality of the 

traditional LbL assembly. A main aim was to demonstrate that (bio)functional hosts can be deliberately 

located in stratified domains without disrupting the intrinsic nanoorganization of the supramolecular 

assemblies, thus leading to the formation of "functional (bio)supramolecular stratified assemblies" via 

soft-chemical nanoarchitectonics.
54

 

 

Herein, we report for the first time the fabrication of stratified functional PEMs using lipid-like 

surfactants as structure-directing agents. The formation of complex interfacial architectures displaying 

localized functional nanospaces with distinct hydrophobic/hydrophilic properties allowed selective 
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incorporation of ferrocene (Fc) into the aliphatic domains. On the other hand, although multilayer 

integration of electroactive polyelectrolytes and redox enzymes have been described, to the best of our 

knowledge reports on truly layered, stratified bioelectroactive films have been missing yet. For such 

systems, we demonstrate bioelectrocatalytic properties arising from the "wiring" of the enzymes hosted 

in the stratified hydrophilic domains across the films. The obtained data indicate that the integration of 

lipid-like surfactants in polyelectrolyte multilayers provides not only a simple and reproducible strategy 

for producing stratified heterosupramolecular assemblies, but also offers a complementary perspective 

from which one can consider the manipulation of the supramolecular organization of 

multicompartmentalized interfacial architectures. 

 

 

 

Results and Discussion 

 

Multilayer films were fabricated by alternating deposition of poly(allylamine) hydrochloride (PAH) 

and sodium dodecylphosphate (DP). The regular deposition of DP/PAH bilayers on a silicon substrate 

was confirmed based on thickness measurements using ellipsometry.  Figure 1 displays the thickness of 

DP/PAH films versus the number of deposited layers obtained from ellipsometry experiments. The 

layer-by-layer formation of the film shows a linear dependence on the number of layers and the 

deposition process is reproducible from layer to layer. The ellipsometric measurement indicated that 

the thickness of each DP/PAH bilayer was 6.6 ± 0.4 nm, in full agreement with XRR results (see 

below). When considering the successive thickness increments, each DP layer contributes with 4.0 ± 

0.5 nm whereas the increment due to the PAH component is 2.6 ± 0.3 nm. According to these values, 

the thickness of each DP layer formed during each assembly step agrees well with the formation of a 

lipid-like bilayer exhibiting a tail-to-tail arrangement (see scheme 1).  

 

 

   
 
Figure 1: Ellipsometric thickness of the dodecyl phosphate/polyallylamine multilayers on silicon surfaces vs the 

number of deposited layers. Odd and even layer numbers correspond to dodecyl phosphate and polyallylamine 

layers, respectively. 
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Scheme 1. Schematic representation of the supramolecular nanoorganized structures generated via layer-by-

layer assembly of stratified dodecyl phosphate/polyallylamine. 

 

 

The mesostructural features and internal organization of the LbL films were then characterized by X-

ray reflectivity (XRR). This nondestructive technique provides nanoscopic information about the 

thickness of the layers constituting the thin film, and it offers advantages over ellipsometry in that 

accurate information about the dimensional characteristics of buried layers can be obtained. Figure 2 

shows the X-ray reflectivity data corresponding to the DP/PAH multilayers. The presence of sharp 

Bragg diffraction peaks up to the fourth order proves a well-stratified layering and indicates highly 

oriented lamellar structures as deduced from the reciprocal spacing ratio (q/q*), 1:2:3:4. Considering 

the chemical nature of the assembled building blocks, the lamellar nanostructure of the 

polyelectrolyte/surfactant multilayer can be described as a microphase-separated molecular system 

consisting of an ionic phase and a non-ionic phase. The ionic phase contains the poly-electrolyte chains 

and the ionic phosphate groups of the surfactants, whereas the non-ionic phase contains the 

hydrophobic alkyl chains.  

 

The narrow form of the peaks together with the high number of Bragg reflections indicate that films 

formed are internally well-organized at the molecular and mesoscopic level. The efficient "structure-

directing" character of dodecylphosphate molecules is likely accountable for the remarkable internal 

organization, leading to the compartmentalization of polyelectrolyte and lipid-like domains. Such an 

organization is only possible when the polycation PAH is confined between the rigid walls of the alkyl 

chains forming a stratified supramolecular array on each layer. 

 

 

Page 4 of 26Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f W
in

ds
or

 o
n 

19
/0

2/
20

18
 1

7:
06

:0
5.

 

View Article Online
DOI: 10.1039/C8SM00052B

http://dx.doi.org/10.1039/c8sm00052b


        
 

Figure 2. Specular X-ray reflectivity curves (empty circles) together with a fit to the data (solid red line) from: 

(a) (DP/PAH)1, (b) (DP/PAH)3, (c) (DP/PAH)5, (d) (DP/PAH)7 multilayers. The X-ray structural data corroborates 

the formation of a stratified interfacial architecture with nanoscale periodicity. 
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From the reflection positions, the lamella dimension (or repeat unit) has been determined to be 9.21,  

8.61, 8.25, and 8.10 nm for (DP/PAH)1, (DP/PAH)3, (DP/PAH)5 , and (DP/PAH)7, respectively. These 

results reveal that lamellar spacing decreases almost linearly upon increasing the number of DP/PAH 

bilayers. This implies that multilayers are more densely stacked when increases the number of layers in 

the film. This observation is in agreement with the fact that the sharpness of the Bragg peaks increases 

upon increasing the number of multilayers. 
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Figure 3. Plot of the scattering length density (SLD) as a function of the profile depth in the z-direction obtained 

from XRR data of the self-assembled multilayers: (a) (DP/PAH)1, (b) (DP/PAH)3, (c) (DP/PAH)5, (d) (DP/PAH)7 

multilayers. 
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In close analogy with separated mesophase structures, the lamellar structure can be interpreted as 

consisting of sheets of thickness d1 constituted of a non-ionic phase (hydrophobic moieties) and sheets 

of thickness d2, constituted of a ionic phase (polyelectrolyte plus ionic head groups). The long period is 

given by d = d1 + d2. From the relative intensities of the lamellar reflections, the thickness of d1 and d2 

for (DP/PAH)3 and (DP/PAH)7 multilayers were calculated to be 5.74 and 2.87 nm, and 6.07 and 2.03 

nm, respectively. Interestingly, it is observed that the decrease in the lamellar spacing upon increasing 

the number of bilayers arises from the significant compaction of the polyelectrolyte layer rather than 

the reorganization of the lipid-like domains. Indeed, d1 values obtained by XRR further corroborate that 

dodecylphosphate domains are assembled into the film forming a bilayer in a tail-to-tail arrangement.    
 

 

Analysis of XRR data provides information regarding the coherent scattering length density (SLD) 

distribution normal to the sample surface, i.e.: z direction. X-ray SLD is proportional to the electron 

density and its profile across the multilayered film can be obtained by using a least-squares fitting 

routine. In our case, data were fitted using the StochFit 1.7 Package.
55

 The SLD profiles obtained from 

the best fittings of the reflectivity profiles are shown in Figure 3 as a function of distance (z) from the 

Si substrate, where the SLDs of PAH, and DP were estimated in relation to the silicon substrate. 

Average values were 16.4 10
-6 

A
-2 

for the PAH layer and 18.2 10
-6 

A
-2

 for the DP layer. The fitted SLD 

profiles corroborate that well-defined stratified arrays of DP/PAH bilayers can be obtained. The quality 

of layer ordering revealed by the spacing between polyelectrolyte and alkyl layers is manifested in 

local maxima and minima in the SLD profiles. The SLD of the polar domains containing the 

polyelectrolyte and phosphate head groups (local maxima) refer to regions of higher electron density as 

compared with alkyl-rich domains (local minima).
56
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Figure 4: Atomic force microscopy imaging (5 x 5 µm
2
) of: (left) (DP-PAH)2 (RMS roughness: 33.8 nm), (DP/PAH)4 

(RMS roughness: 30.2 nm), and (DP/PAH)6 (RMS roughness: 17.6 nm); (right) (DP-PAH)2-DP (RMS roughness: 

25.9 nm) , (DP/PAH)4-DP (RMS roughness: 16 nm), and (DP/PAH)6-DP (RMS roughness: 66.3 nm). 

 

LbL films grown on silicon substrates were then characterized by atomic force microscopy (AFM). 

Films display a flat morphology in the presence of some isolated grains, with a diameter in the 350–500 

nm range (Figure 4). The presence of these grains seems to be more evident in the case of (DP/PAH)2 

and (DP/PAH)4 films. This observation is in agreement with XRR data indicating that thinner films are 

less organized and, according to AFM results, this fact could be ascribed to morphological effects.  

 

It is also observed that the film morphology is not strongly influenced by the chemical nature of the 

capping layer, as confirmed in the recorded AFM height images. The contrast in the AFM phase 

images (see supporting information file for details, Fig.1S) does not provide evidence for the presence 

of patches, islands or phase-segregated domains,
57

 pointing to a favorable interaction between PAH and 

DP units that leads to the uniform spreading of each layer during the assembly step. 

  

In this sense, we should note that the assembly between PAH and DP in water is driven by both 

electrostatic and hydrophobic interactions.
58

 As such, to characterize the prevalence of hydrophobicity 

as a driving force in the assembly process we carried out water contact angle measurements on 

multilayers capped with PAH and DP, respectively. Exposure of the multilayers to a drop of water 

reveals contact angles between 83° to 108° (see Table 1). These values reflect the hydrophobic 

character of the samples, showing a more hydrophobic behavior when DP is forming the outermost 

layer. 

 

The increasing hydrophobicity of the surface upon adding more layers to the film supports the idea that 

the wetting characteristics are influenced by the presence of organized hydrophobic alkyl domains 

close to the film surface.  

 

In principle, the anionic headgroups of the DP molecules bind to the cationic sites of the PAH layer, 

leaving the hydrophobic hydrocarbon tails exposed, which would increase the hydrophobicity of the 

PAH/DP outer layer. It is, however, noteworthy that PAH assembly on DP-capped surfaces also leads 

to hydrophobic surfaces (see Table 1). In close resemblance to DP-capped films, the hydrophobicity of 

PAH-capped films increases after incorporating successive layers to the multilayered film. In this 

regard, we should note that wetting measurements are very sensitive to the chemical nature of the 

outermost region of the films, ~ 3 nm. If we consider that the thickness of the assembled PAH layer is 

~ 2 nm, the contact angle values might indicate that the underlaying alkyl chains of DP molecules 

dominate the wetting characteristics of the film and prevails on hydrophilic character of the PAH layer. 

A similar observation was reported in other works for the adsorption of sodium dodecyl sulfate (SDS) 

on poly(ethylenimine)
59

 and poly(allylamine)
60

 in multilayered thin films. 
 

Table 1. Contact angle measurements corresponding to DP- and PAH-capped multilayers. 

 

n° of bilayer 
average contact angle (°) 

DP PAH 

1 83.7 88.3 

2 106.7 90.3 

4 106.7 97.0 
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6 105.7 103.2 

8 108.4 104.6 

 

The chemical nature of the films was determined by X-ray photoelectron spectroscopy (XPS). Figure 5 

shows N1s and P2p core regions of the XPS spectra of a Si/PEI/(DP/PAH)5 assembly. Quantitative 

results by fitting of the XPS data for assemblies of different number of bilayers are summarized in 

Table 2. 

 

   

 
 

Figure 5. XPS spectra (including fittings) of a (DP/PAH)5 multilayer assembled on Si. The plots describe the 

binding energy region corresponding to (a) N1s and (b) P2p.  

 

N 1s XPS signal was resolved into two peaks, at binding energies corresponding to 401.8 eV and 399.3 

eV (Figure 5).
61,62

  These peaks have been assigned to N-C species of protonated and neutral amines 

respectively.
63

 From the relative area of these two contributions, the protonation degree was determined 

for PAH in each assembly. These results indicate that PAH is highly protonated (about 90 %). These 

values of protonation degree are higher than those calculated at pH 8 using the reported pKa for PAH 

in solution (8.5
64

-9.2
65

) and, recently, for adsorbed PAH (8.7
66

), indicating that some additional 

protonation is induced by interaction with the DP components within the assemblies. The increase in 

the protonation degree of surface amino-groups by interaction with simple phosphate anions has been 

recently reported.
66

 The P2p core region shows the spin-orbit coupling with binding energy positions at 

133.7 for P2p3/2 and 135.1 eV for P2p1/2. The atomic N/P ratio was determined for each assembly by 

employing the relative effective sections obtained from the XPS results of (NH4)2HPO4. The values 

reported in Table 2 indicate that more than three amine groups per phosphate anion are present in the 
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assemblies. The decrease in the proportion as the number of bilayers increases could be attributed to 

the influence of the initial PEI layer that also contributes to the N1s core signal.  

 

We might wonder about the possibility of intrinsic charge compensation within the films. Kooijman 

and co-workers have shown that the interaction with charged primary and quaternary amines induces a 

higher dissociation degree of phosphatidic acid, changing its electrostatic charge from -1 to -2 at 

neutral pH.
67–69

 Even it has been recently shown that simple phosphates anions bound to amine surface 

groups present a higher dissociation degree as a consequence of the interaction with the positively 

charged groups.
66

 Taking into account the pKa values reported for dodecylphosphate (2.8 and 7.2)
70

 

and the putative effect of the charged amino groups, it could be reasonable to consider that phosphate 

groups are doubly charged within the assemblies. However, this charge is not enough to compensate 

the charge of amine moieties even for the thickest films. The presence of chloride (and the absence of 

Na), as revealed by the XPS (see ESI file for details, Fig.2S), confirms the idea that the PAH layer 

contains some proportion of chloride anions from solution to compensate the excess of positive charge. 

 

 
Table 2. Peak position and assignment of the components employed for fitting XPS results. 

 

 N1s Components 
Atomic Ratio N / P 

 NH2 NH3
+
 

BE 399.3 eV 401.8 eV  

Si/PEI/(DP/PAH)1 12% 88 % 6.5 

Si/PEI/(DP/PAH)3 8 % 92 % 4.2 

Si/PEI/(DP/PAH)5 5 % 95 % 4.3 

Si/PEI/(DP/PAH)8 8 % 92% 3.3 

 

 

Self-assembled films were then charaterized by Fourier Transform infrared (FTIR) spectroscopy. Some 

characteristic bands of organic phosphates can be observed in the spectrum of solid DP (Figure 6). The 

bands at about 950 cm
-1

 are due to P-OH stretching modes whereas the bands at about 1075 cm
-1 

has 

been assigned to P-O stretching modes in POC groups.
71

 the bands at about 1150-1250 cm
-1 

are 

assigned to P=O stretching.
72

  There are also other bands at 1100-1190 cm
-1

, assigned to C-C and C-O 

stretching, and the intense band at 1470 cm
-1 

has been assigned to the HCH scissoring modes.
73

 

The FTIR spectrum of PAH drop-casted on Si from an acidic solution is also presented in Figure 6. In 

this wavelength range, PAH shows two main bands separated by about 100 cm
-1

. These peaks have 

been assigned to bending modes of protonated amine groups.
74,75

 In the present case, they appear at 

1507 and 1610 cm
-1

 and correspond to symmetric and antisymmetric bending modes of the protonated 

primary amines respectively.
76,77

 There is also a band at about 1460 assigned to CH bending modes.
78

  

The main bands from PAH and DP are also present in the spectrum of the LbL assembly (Figure 6). 

However, there are some features that indicate the interaction of the protonated amine groups and 

phosphates within the assemblies. Firstly, the band at about 950 cm
-1

 has almost disappeared, which 

indicates a higher dissociation of the POH groups as could be expected from the association to -NH3
+
 

moieties.
66

 Moreover, the peaks assigned to phosphate are broader, indicating a less defined structure 

compared with that in the solid DP. On the other hand, those bands assigned to the bending modes of 

ammonium groups shift to higher wavenumbers. This type of shift has been ascribed to the interaction 

with negative species,
79,80

 supporting the idea of the association to anionic phosphates.  

 
Table 3. Vibrational spectroscopic data of DP/PAH assemblies. 
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Bands Position Assignments 

(1) 950 cm
-1

 P-OH stretching 

(2) 1075 cm
-1

 P-O stretching 

(3) 1150-1250 cm
-1

 P=O stretching 

(4) 1507  /1541 cm
-1

 N-H bending 

(5) 1610 / 1634 cm
-1

 N-H bending 

  

 

 
Figure 6. FTIR spectra of solid DP, PAH and a (DP/PAH)5 assembly deposited on a Si substrate. 

 

 

Assembly and compartmentalization of redox units in highly organized stacked multilayers 

 

One of the attractive features of the layer-by-layer technique is its ability to create complex interfacial 

architectures with a high level of hierarchy and separate compartments. In this sense, 

compartmentalization and positional assembly are two essential and complementary requisites involved 

in biological systems to control concerted process. Material scientists have fruitfully employed these 

notions to build diverse classes of hierarchically structured solids and thin-films using many different 

building blocks including crystallizing molecules,
81

 colloids,
82

 mesoporous architectures,
83

 or phase-

separating polymers,
84

 among others. Here, we extend this notion to create mesoscale-organized 

interfacial architectures displaying well-defined stratified phase-separated regions within the film that 

can behave as functional nanodomains, with highly controlled chemistry and interactions within 

restricted volumes. Our goal is the tailored production of complex film structures displaying spatially-

addressed chemistry based on the control of assembly process. As is well-known the self-assembly of 

amphiphilic molecules in water represents a valuable strategy to create compartmentalized materials 

(e.g., micelles, vesicles, and nanogels). In principle, the generation of microdomains within organized 

mesostructures would facilitate the introduction of different functional units into discrete but closely 

located nanospaces. The amphiphilic structure of surfactants and their aggregating properties in 
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aqueous solutions provide a multifunctional environment for the solubilization and partition of 

molecules whose water solubility is rather low.  

 

With this idea in mind, we solubilized ferrocene (Fc) in dodecyl phosphate micelles with the aim of 

spatially-addressing redox-active units in the hydrophobic domains of the multilayered films. Ferrocene 

is a highly hydrophobic compound -only sparingly soluble in water- that can be solubilized in aqueous 

solutions through the encapsulation in surfactant micelles without detrimental effects on its intrinsic 

redox activity.  

 

Multilayer films exhibiting compartmentalized redox-active domains were fabricated by alternating 

deposition of polyallylamine (PAH) and ferrocene-loaded dodecyl phosphate micelles on Si substrates. 

The presence of ferrocene within the assemblies was confirmed by XPS. The appearance of the signal 

assigned to the Fe2p core level in the XPS spectrum of the Si/PEI/(DP/PAH)5 assembly prepared from 

a solution of DP saturated with ferrocene (Figure 7) clearly indicates that ferrocene in effectively 

incorporated into the films. The binding energy (BE) of the Fe2p1/2 and Fe2p3/2 components were 723.8 

and 710.5 eV respectively, which is consistent with the presence of ferrocene moieties.
85,86

 

 

 
 

Figure 7. XPS spectra in the Fe2p region for a Si/PEI/(DP/PAH)5 assembly prepared without (a) and with (b) 

ferrocene in the DP solution. 

 

 

Concomitantly, XRR characterization confirmed that the presence of ferrocene in the multilayer does 

not alter the internal organization of the stratified LbL films, as indicated by the presence of well-

defined Bragg peaks (Figure 8). From the reflectivity data we can conclude that the Fc is incorporated 

into well-stratified multilayers exhibiting highly oriented lamellar organization. Considering the 

hydrophobic nature of Fc we infer that the redox units are located in the hyrophobic alkyl domains. For 

instance, the slight shift in the position of q* indicates that the lamellar spacing changes from 4.2 to 4.4 

nm due to the steric contribution of Fc molecules located in the hydrophobic domains.  
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Figure 8.  Specular X-ray reflectivity curve (empty circles) together with a fit to the data (solid red line) 

corresponding to a (DP-Fc/PAH)5 supramolecular stratified assembly integrating ferrocene (Fc) into the 

stratified domains. The X-ray structural data corroborates the formation of a stratified structure even in the 

presence of ferrocene hosted in the multilayer.  

 

 

On the other hand, the presence of distinct, periodic, and sharply contrasting PAH and DP layers in the 

fitted SLD profile is striking (Figure 9), further indicating that layering is preserved in the presence of 

Fc. It should be noted that SLD contrast between polar (higher electron density) and non-polar (lower 

electron density) domains is slightly decreased due to the insertion of electron-rich Fc units in the alkyl 

bilayers.  
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Figure 9. Plot of the scattering length density (SLD) as a function of the profile depth in the z-direction obtained 

from XRR data of the self-assembled multilayers in the absence (red trace) and in the presence of ferrocene 

(Fc) units hosted in the multilayer. The XRR-derived data corroborate that the presence of Fc induces slight 

dimensional changes without affecting the stratified nano-organization of the supramolecular assembly. 

 

 

We have so far demonstrated that the presence of Fc does not alter the nanoscale lamellar organization 

of the stratified film. Now, we will study the influence of the Fc units (guest molecules) on the 

molecular organization of the hydrophobic alkyl domains. ATR-FTIR spectra of the DP/PAH assembly 

and solid DP are presented in Figure 10.  The bands at about 2850 and 2920 cm
-1

 are assigned to 

symmetric and asymmetric stretching modes of methylenes and the band at 2950 cm
-1

 is assigned to C-

H stretching modes of methyl groups. The bands of the methylene stretching have been extensively 

employed as markers of the degree of order of the packing of aliphatic chains.
87,88

 Both, the shifting to 

higher wavenumbers as well as the broadening of these bands have been associated to an increase in 

the disorder and a higher population of gauche conformations.
89

 Moreover, the increase in the intensity 

ratio (Iasym/Isym) is related to the increase in the disorder of the chains.
90

 In the present case, the band 

positions of the methylene stretching and the intensity ratio reveals that the packing of the aliphatic 

chains of DP in the assemblies is similar to that in the solid (refer to ESI file for further details, table 

S1). The ATR-FTIR spectrum of a DP-Fc/PAH assembly is also presented in Figure 10 for 

comparison. In this case, the features of the methylene bands clearly indicate a higher disorder of the 

aliphatic chains, which suggest that the Fc moieties are located within the DP domains and promote the 

local molecular disorder of the hydrophobic domains.  

 

 

   
 
Figure 10. ATR-FTIR spectra in the region of C-H stretching. For the sake of clarity, spectra were shifted in 

absorbance. 

 

 

The insertion of electroactive Fc units into the multilayered films was also proven by cyclic 

voltammetry. Figure 11 shows the cyclic voltammetry (CV) of (DP-Fc/PAH)5 film, which exhibits a 

highly reversible electrochemical response. The formal potential of Fc units embedded into the alkyl 

domains of the stratified multilayer was 0.28 V (versus Ag/AgCl). In this regard, Creager and Rowe
91

 

demonstrated that the formal potential of Fc can be strongly influenced by the nature of the interfacial 

microenvironment. These authors showed that embedding an electroactive moiety in an alkyl pocket 

could affect the redox reaction by preferentially stabilizing one form of the redox couple relative to 

another (a solvent effect), or by preventing counterions in solution from entering the pocket (a double-

layer effect). Both of these effects could cause the apparent formal potential for the immobilized redox 
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species to shift. In our case, even though the measured values fall into the typical range of ferrocene, 

the rather low formal potential reflects that Fc units are embedded into the alkyl bilayer but in close 

proximity to the polar environment provided by the polyelectrolyte-rich domains. We hypothesize that 

the disorder induced by the incorporation of ferrocene in the lipid layer might promote the transport of 

co-ions and counterions during the electrochemical cycling, thus facilitating the reversible redox 

reaction of the ferrocene units. 

 

 

   
 
Figure 11. Cyclic voltammogram of a (DP-Fc/PAH)5 film assembled on a gold electrode. Scan rate: 100 mV s

-1
. 

Electrolyte: 0.1 M KCl 

 

 

In addition, we should also note that despite the fact that redox units are not covalently attached to the 

film, the electroactive response is very stable over time. Continuous cycling of Fc-containing stratified 

(DP/PAH) multilayers at a scan rate of 50 mV/s during several hours revealed no evidence of material 

loss or decrease in electroactivity. Thus, we can conclude that the Fc units remain robustly inserted into 

the stratified domains within the experimental potential range. This is a remarkable feature if we 

consider that in many cases redox-active multilayers held together solely by electrostatic interactions 

material losses after extensive redox activity.
92
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Scheme 2. Schematic representation of the LbL-assembled supramolecular stratified structure integrating 

ferrocene units in the stratified hydrophobic domains.  

 

 

 

Construction of stratified, enzyme-containing multilayer assemblies - Bioelectrochemical 

nanoarchitectonics 

 

 

Multilayer films were fabricated by alternating deposition of redox-active osmium complex tagged 

poly(allylamine) hydrochloride (OsPA), sodium dodecylphosphate (DP) and glucose oxidase (GOx). 

The protocol leading to the layer-by-layer formation of multicomposite molecular assemblies 

comprised of OsPA/DP/OsPA/GOx multilayers is schematically outlined in scheme 3. The reason for 

incorporating an additional OsPA layer in between the surfactant bilayer and the GOx layer is that this 

configuration improves the "wiring" efficiency of the redox assembly.  Alternating layers of OsPA, DP 

and GOx were then deposited using solutions with concentrations, 0.4% w/v, 10mM and 1mg/ml, 

respectively. In this case, we have diluted the concentration of dodecyl phosphate to avoid surfactant-

induced denaturation of the enzyme.
93

   

 

Representative AFM images of the morphology of the enzyme-containing stratified films are shown in 

Figure 12. (OsPA/DP/OsPA/GOx)5 films grown on silicon consist of tightly packed grains leading to 

the formation of a homogenously distributed nodular-like film. Concomitantly, a quantitative structural 

analysis of the multilayer thin films deposited on substrates in the out-of-plane and in-plane directions 

of the film was carried out by using grazing-incidence small-angle X-ray scattering (GISAXS). Indeed, 

the presence of lamellar structures may be checked using GISAXS measurements, which are sensitive 

to variations in structure in the plane of the sample.  

 

 
 

Figure 12. Atomic force microscopy imaging (5 x 5 mm
2
) (3D and top view) corresponding to 

(OsPA/DP/OsPA/GOx)5 films LbL-assembled on silicon. 

 

GISAXS characterization of (OsPA/DP/OsPA/GOx)5 films are shown in Figure 13a. The GISAXS 

patterns eloquently reveals the presence of meso-organization arising from the lamellar domains 

oriented parallel to the substrate. Both patterns show a bright region (highest intensity) in the direction 

qz (for qy → 0) and the presence of a faint halo (Figure 13a). This suggests that while the lamellar 

domains are predominantly oriented parallel to the substrate there is some contribution of randomly 

oriented small domains. 

 

The position of the scattering maxima with respect to the qz axis, the scattering wave vector 

perpendicular to the surface of the film, corresponds to the lamellar organization of hydrophilic and 

hydrophobic domains pores. The qy value of 2.09 nm
-1

, at scattering maxima, corresponds to the 

average lamellar spacing of 3 nm in the z-direction perpendicular to the film surface. 
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Taking into account that bioelectrochemical nanoarchitectonics is the main application of this 

nanostructured system, we considered that an aqueous environment represents a more realistic scenario 

for studying the nano- and mesoscale organization of the multilayered film.  As is well known water 

uptake may lead to swelling of hydrophilic polyelectrolyte domains in phase-segregated materials.
94,95

  

 

With this in mind, we performed GISAXS experiments under high humidity conditions (relative 

humidity, RH ~ 95%). We observed a slight increase in lamellar spacing (l) from 3.0 to 3.4 nm upon 

increasing the relative humidity from 1 to 95% (Figure 13b). In few words, the lamellar domains 

experience only slight dimensional changes (13 %) in the presence of water. These results confirm the 

non trivial fact that the stratified organization in which the polyelectrolyte bearing redox centers, the 

enzymes and the alkyl chains accommodate during the multilayer growth is preserved after immersion 

in water. 

 

   
 
Figure 13. GISAXS patterns corresponding to a (OsPA/DP/OsPA/GOx)5 multilayer self-assembled on a silicon 

substrate measured at: (a) RH ~ 0 % and (b) RH ~ 95%. (c) Out-of-plane scattering profiles extracted along the 

qz direction (at qy = 0.2 nm
-1

 with ∆qz width corresponding to ± 0.01 nm
-1

) from the GISAXS patterns of 

(OsPA/DP/OsPA/GOx)5 multilayers obtained under different humidity conditions. GISAXS data confirm that the 

presence of water promotes the swelling of the supramolecular assembly without affecting the stratified 

organization. 
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Once demonstrated that the stratified meso-organization the multilayer is not altered by the aqueous 

environment we proceeded to characterize the bioelectrocatalytic features of stratified enzyme-

containing assemblies in the presence of the enzyme substrate.  

 

Figure 14 shows the CVs of a gold electrode modified with (OsPA/DP/OsPA/GOx)5 multilayers in the 

absence and presence of 50 mM glucose. When no glucose was present, a reversible redox peak was 

observed at 370 mV. However, upon addition of glucose, there was a substantial increase in the 

oxidation current and a concomitant decrease in the reduction current. This behavior is indicative of the 

redox polymer mediation of the well-known GOx-catalyzed oxidation of glucose. 

 

The voltammetric response eloquently illustrates the responsiveness of the GOx-containing 

supramolecular assembly to the presence of the glucose in the electrolyte solution. Indeed, the stacked 

multilayers constituted of (OsPA/DP/OsPA/GOx)5 reveal a significant anodic current implying that 

glucose is readily oxidized by the enzyme-containing mesostructured redox-active assembly. Note, 

however, that the "wiring" efficiency is lower than in the case of less-organized, gel-like multilayer 

asemblies (see Fig. S3 in ESI file for a direct comparison between the electrochemical behaviour of 

highly stratified (OsPA/DP/OsPA/GOx)5 and amorphous-like (OsPA/GOx)5 multilayers).   
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Figure 14. Cyclic voltammograms corresponding to: (a) (OsPA/DP/OsPA/GOx)5 and (b) 

(OsPA/DP/OsPA/GOx)5/OsPA. The blue trace refers to voltammetric measurements performed in the absence 

of glucose whereas the red trace refers voltammetric measurements performed in the presence of 50 mM 

glucose. Supporting electrolyte: 100 mM Tris-HCl buffer + 0.1 M NaCl (pH 7.4). 
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Scheme 3. Simplified schematic of the glucose-responsive ternary supramolecular assembly. Poly(allylamine) 

containing an osmium polypyridil complex (OsPA), dodecylphosphate (DP) and glucose oxidase (GOx) are 

sequentially assembled in a layer-by-layer fashion onto the electrode surface. The figure displays the 

constituting building blocks (not to scale) participating in the generation of the bioelectrochemical signal in the 

presence of glucose as well as a simplified view of the stratified organization of the interfacial architecture 

 

This being said, we should note that the goal of our work was not to demonstrate that the stratification 

improves the "wiring", but instead, that the redox "wiring" followed by bioelectrocatalytic activity can 

be attained in highly stratified multilayers - a fact that has not been discussed or demonstrated 

previously.  

 

CONCLUSIONS 

 

Structural control of highly-ordered multilayers displaying spatially-addressed functional domains is a 

fundamental ambition of supramolecular assembly research in solution-based systems. Herein, we have 

proposed a novel and facile pathway for growing highly oriented multilayers based on the assembly of 

a polycation, PAH, and an anionic surfactant, DP, that ultimately act as structure directing agent. 

 

We have shown that highly stratified films may be obtained, consisting of a regular lamellar 

nanostructure extending over the films, with preferential orientation parallel to the substrate. This 

feature is different from that of the conventional polycation-polyanion and protein-polyion multilayer 

assemblies which display a "fuzzy" organization with no internal structure. The presence of the 

surfactant forming organized mesophases is conducive to stratified multilayers of higher order. 

However, this condition is not sufficient, if we consider that previous reports describing the multilayer 

assembly of surfactant micelles and polyelectrolytes did not lead to the formation highly stratified 

systems. We hypothesize that the strong electrostatic and ion pairing interaction between amino groups 

of PAH and phosphate groups of DP - together with the hydrophobic forces introduced by alkyl chains 
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- are responsible for the formation of ordered surfactant bilayers during the assembly process. 

Eventually, these bilayers act as physical barriers that hinder interdifussion of the polyelectrolye chains 

and confer dimensional stability to the nanoarchitectured multilayer system. As a result, this strategy 

constitutes a rapid and experimentally very simple technique to create complex stratified multilayers 

with precise control of layer composition and thickness. The versatility of the present methodology is 

remarkable as the deposition process allowed for excellent spatial segregation of individual 

components in nanocompartmentalized stratified domains. As a way of example, the stratified 

multilayers containing hydrophobic and hydrophilic domains were successfully employed as hosts for 

redox-active units and bioactive elements and used to construct electrochemical interfaces. Ferrocene 

molecules were hosted into the lipophilic nanocompartments leading to the site-selective location of 

redox-active units into the stratified assembly. Then, glucose oxidase was selectively embedded into 

the hydrophilic nanocompartments originated from the spatial segregation polyallylamine bearing Os-

based redox centers. Bioelectrocatalysis in the presence of glucose was shown to occur in ordered, 

stratified multilayers as evidenced by generation of well-defined amperometric signals. Examples 

described here were applied specifically to electrochemical "nanoarchitectonics". However, the 

possibility to fabricate functional, well-stratified multilayers using this strategy reaches beyond this 

particular field.  

 

Taken altogether, this approach offers a complete set of tools allowing complex stratified interfacial 

architectures to be fabricated that can serve as nanocompartments for spatial confinement of small 

functional molecules, or even functional polymers and biomolecules. We believe that the proposed 

methodology can further expand the reach and scope of nanoarchitectonics provided that it has been 

demonstrated that multilayer assembly in the presence of structure-directing agents is a valuable tool 

for structural control of functional stratified nanosystems. As such, we consider that this strategy in the 

toolkit of rational layer-by-layer assembly will contribute to the rapid development of complex 

functional multilayered 3D-nanoarchitectures exhibiting high degree of stratification. 
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