94 research outputs found

    Cortico-Subcortical White Matter Bundle Changes in Cervical Dystonia and Blepharospasm

    Get PDF
    Dystonia is thought to be a network disorder due to abnormalities in the basal ganglia-thalamo-cortical circuit. We aimed to investigate the white matter (WM) microstructural damage of bundles connecting pre-defined subcortical and cortical regions in cervical dystonia (CD) and blepharospasm (BSP). Thirty-five patients (17 with CD and 18 with BSP) and 17 healthy subjects underwent MRI, including diffusion tensor imaging (DTI). Probabilistic tractography (BedpostX) was performed to reconstruct WM tracts connecting the globus pallidus, putamen and thalamus with the primary motor, primary sensory and supplementary motor cortices. WM tract integrity was evaluated by deriving their DTI metrics. Significant differences in mean, radial and axial diffusivity between CD and HS and between BSP and HS were found in the majority of the reconstructed WM tracts, while no differences were found between the two groups of patients. The observation of abnormalities in DTI metrics of specific WM tracts suggests a diffuse and extensive loss of WM integrity as a common feature of CD and BSP, aligning with the increasing evidence of microstructural damage of several brain regions belonging to specific circuits, such as the basal ganglia-thalamo-cortical circuit, which likely reflects a common pathophysiological mechanism of focal dystonia

    Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability

    Get PDF
    Background and purpose To investigate the relationship between the functional connectivity (FC) of the sensorimotor and cognitive cerebellum and measures of structural damage in patients with multiple sclerosis (MS) and no physical disability. Methods We selected 144 relapsing-remitting MS patients with an Expanded Disability Status Scale score of <= 1.5 and 98 healthy controls from the Italian Neuroimaging Network Initiative database. From multimodal 3T magnetic resonance imaging (MRI), including functional MRI at rest, we calculated lesion load, cortical thickness, and white matter, cortical gray matter, and caudate, putamen, thalamic, and cerebellar volumes. Voxel-wise FC of the sensorimotor and cognitive cerebellum was assessed with seed-based analysis, and multiple regression analysis was used to evaluate the relationship between FC and structural damage. Results Whole brain, white matter, caudate, putamen, and thalamic volumes were reduced in patients compared to controls, whereas cortical gray matter was not significantly different in patients versus controls. Both the sensorimotor and cognitive cerebellum showed a widespread pattern of increased and decreased FC that were negatively associated with structural measures, indicating that the lower the FC, the greater the tissue loss. Lastly, among multiple structural measures, cortical gray matter and white matter volumes were the best predictors of cerebellar FC alterations. Conclusions Increased and decreased cerebellar FC with several brain areas coexist in MS patients with no disability. Our data suggest that white matter loss hampers FC, whereas, in the absence of atrophy, cortical volume represents the framework for FC to increase

    An Observational Study to Develop a Predictive Model for Bacterial Pneumonia Diagnosis in Severe COVID-19 Patients—C19-PNEUMOSCORE

    Get PDF
    In COVID-19 patients, antibiotics overuse is still an issue. A predictive scoring model for the diagnosis of bacterial pneumonia at intensive care unit (ICU) admission would be a useful stewardship tool. We performed a multicenter observational study including 331 COVID-19 patients requiring invasive mechanical ventilation at ICU admission; 179 patients with bacterial pneumonia; and 152 displaying negative lower-respiratory samplings. A multivariable logistic regression model was built to identify predictors of pulmonary co-infections, and a composite risk score was developed using & beta;-coefficients. We identified seven variables as predictors of bacterial pneumonia: vaccination status (OR 7.01; 95% CI, 1.73-28.39); chronic kidney disease (OR 3.16; 95% CI, 1.15-8.71); pre-ICU hospital length of stay & GE; 5 days (OR 1.94; 95% CI, 1.11-3.4); neutrophils & GE; 9.41 x 10(9)/L (OR 1.96; 95% CI, 1.16-3.30); procalcitonin & GE; 0.2 ng/mL (OR 5.09; 95% CI, 2.93-8.84); C-reactive protein & GE; 107.6 mg/L (OR 1.99; 95% CI, 1.15-3.46); and Brixia chest X-ray score & GE; 9 (OR 2.03; 95% CI, 1.19-3.45). A predictive score (C19-PNEUMOSCORE), ranging from 0 to 9, was obtained by assigning one point to each variable, except from procalcitonin and vaccine status, which gained two points each. At a cut-off of & GE;3, the model exhibited a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 84.9%, 55.9%, 69.4%, 75.9%, and 71.6%, respectively. C19-PNEUMOSCORE may be an easy-to-use bedside composite tool for the early identification of severe COVID-19 patients with pulmonary bacterial co-infection at ICU admission. Its implementation may help clinicians to optimize antibiotics administration in this setting

    Parietal resting-state EEG alpha source connectivity is associated with subcortical white matter lesions in HIV-positive people

    Get PDF
    Objective Parietal resting-state electroencephalographic (rsEEG) alpha (8–10 Hz) source connectivity is abnormal in HIV-positive persons. Here we tested whether this abnormality may be associated with subcortical white matter vascular lesions in the cerebral hemispheres. Methods Clinical, rsEEG, and magnetic resonance imaging (MRI) datasets in 38 HIV-positive persons and clinical and rsEEG datasets in 13 healthy controls were analyzed. Radiologists visually evaluated the subcortical white matter hyperintensities from T2-weighted FLAIR MRIs (i.e., Fazekas scale). In parallel, neurophysiologists estimated the eLORETA rsEEG source lagged linear connectivity from parietal cortical regions of interest. Results Compared to the HIV participants with no/negligible subcortical white matter hyperintensities, the HIV participants with mild/moderate subcortical white matter hyperintensities showed lower parietal interhemispheric rsEEG alpha lagged linear connectivity. This effect was also observed in HIV-positive persons with unimpaired cognition. This rsEEG marker allowed good discrimination (area under the receiver operating characteristic curve > 0.80) between the HIV-positive individuals with different amounts of subcortical white matter hyperintensities. Conclusions The parietal rsEEG alpha source connectivity is associated with subcortical white matter vascular lesions in HIV-positive persons, even without neurocognitive disorders. Significance Those MRI-rsEEG markers may be used to screen HIV-positive persons at risk of neurocognitive disorders

    Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura

    Get PDF
    BackgroundThe Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs.MethodsWe conducted a case–control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups.ResultsWe found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC.ConclusionThe posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas

    Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative

    Get PDF
    The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis (MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI (RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites and appears suitable for multisite FC analyses on harmonized network estimates

    Non-invasive ventilation in patients with an altered level of consciousness. A clinical review and practical insights

    Get PDF
    Non-invasive ventilation has gained an increasingly pivotal role in the treatment of acute hypoxemic and/or hypercapnic respira-tory failure and offers multiple advantages over invasive mechanical ventilation. Some of these advantages include the preserva-tion of airway defense mechanisms, a reduced need for sedation, and an avoidance of complications related to endotracheal intubation.Despite its advantages, non-invasive ventilation has some contraindications that include, among them, severe encephalopathy. In this review article, the rationale, evidence, and drawbacks of the use of noninvasive ventilation in the context of hypercapnic and non-hypercapnic patients with an altered level of consciousness are analyzed

    Long-term outcome of COVID-19 patients treated with helmet noninvasive ventilation vs. high-flow nasal oxygen: a randomized trial

    Get PDF
    Background: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. Methods: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. Results: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47–77] of predicted vs. 80% [71–88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53–70] vs. 80 [70–83], p = 0.01). Conclusions: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 202
    • …
    corecore