640 research outputs found

    A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The magnetic properties of <it>Plasmodium</it>-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that <it>Plasmodium falciparum </it>gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) methods.</p> <p>Methods</p> <p>Gametocyte detection in six series of dilutions of cultured <it>P. falciparum </it>parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques.</p> <p>Results</p> <p>The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR.</p> <p>Conclusion</p> <p>Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.</p

    Parameterization of high magnetic field gradient fractionation columns for applications with Plasmodium falciparum infected human erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic fractionation of erythrocytes infected with <it>Plasmodium falicparum </it>has several research uses including enrichment of infected cells from parasite cultures or enhanced detection of <it>P. falciparum </it>gametocytes. The aim of the present study was to quantitatively characterize the magnetic fractionation process and thus enable optimization of protocols developed for specific uses.</p> <p>Methods</p> <p>Synchronized cultures of <it>P. falciparum </it>parasites incubated with human erythrocytes were magnetically fractionated with commercially available columns. The timing of the fractionation experiments was such that the parasites were in second half of their erythrocytic life cycle with parasite densities ranging from 1 to 9%. Fractionations were carried out in a single pass through the columns. Cells were enumerated and differentiated in the initial samples as well as in the positive and negative fractions. The capture of cells by the fractionation column was described by a saturation binding model.</p> <p>Results</p> <p>The magnetic binding affinity to the column matrix was approximately 350 times greater for infected cells compared with uninfected cells. The purity of infected cells in the captured fraction was generally >80% but decreased rapidly (to less than 50%) when the number of infected cells that passed through the column was substantially decreased (to less than 9 ± 5 × 10<sup>5 </sup>cells). The distribution of captured parasite developmental stages shifted to mature stages as the number of infected cells in the initial samples and flow rate increased. The relationship between the yield of infected cells in the captured fraction and flow rate of cells conformed to a complementary cumulative log-normal equation with flow rates >1.6 × 10<sup>5 </sup>cells per second resulting in yields <50%.</p> <p>Conclusions</p> <p>A detailed quantitative analysis of a batchwise magnetic fractionation process for malaria infected erythrocytes using high gradient magnetic fractionation columns was performed. The models applied in this study allow the prediction of capture efficiency if the initial infected cell concentration and the flow rate are known.</p

    A comparative study of a flow-cytometry-based assessment of in vitro Plasmodium falciparum drug sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently developed Sybr Green-based <it>in vitro Plasmodium falciparum </it>drug sensitivity assays provide an attractive alternative to current manual and automated methods. The present study evaluated flow cytometry measurement of DNA staining with Sybr Green in comparison with the <it>P. falciparum </it>lactate dehydrogenase assay, the tritiated hypoxanthine incorporation assay, a previously described Sybr Green based plate reader assay and light microscopy.</p> <p>Methods</p> <p>All assays were set up in standardized format in 96-well plates. The 50% inhibitory concentrations (IC<sub>50</sub>) of chloroquine, mefloquine and dihydroartemisinin against the laboratory adapted <it>P. falciparum </it>strains 3D7, E8B, W2mef and Dd2 were determined using each method.</p> <p>Results</p> <p>The resolution achieved by flow cytometry allowed quantification of the increase in individual cell DNA content after an incubation period of only 24 h. Regression, and Bland and Altman analyses showed that the IC<sub>50 </sub>values determined using the flow cytometry assay after 24 h agreed well with those obtained using the hypoxanthine incorporation assay, the <it>P. falciparum </it>lactate dehydrogenase assay, the Sybr Green plate reader assay and light microscopy. However the values obtained with the flow cytometry assay after 48 h of incubation differed significantly from those obtained with the hypoxanthine incorporation assay, and the <it>P. falciparum </it>lactate dehydrogenase assay at low IC<sub>50 </sub>values, but agreed well with the Sybr Green plate reader assay and light microscopy.</p> <p>Conclusions</p> <p>Although flow cytometric equipment is expensive, the necessary reagents are inexpensive, the procedure is simple and rapid, and the cell volume required is minimal. This should allow field studies using fingerprick sample volumes.</p

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Multifunctional hybrid materials based on transparent poly(methyl methacrylate) reinforced by lanthanoid hydroxo clusters

    Get PDF
    Three pentanuclear lanthanoid hydroxo clusters of composition [Ln(OH)5(abzm)10], where Ln = Eu, Tb,Ho and abzm = di(4-allyloxy)benzoylmethanide, have been prepared. The structures have beencharacterised by means of IR, Raman, elemental analyses and X-ray diffraction, showing a pyramidalsquare-based cluster core. The clusters (Tb and Ho) exhibit Curie?Weiss Law behaviour, displayingantiferromagnetic ordering at low temperatures. The emission properties of the Eu cluster demonstratethe abzm- ligand is an efficient antenna (lex = 420 nm) only for the sensitisation of Eu luminescence inthe visible range, via energy transfer to the 5D0 state of the trivalent metal. The clusters have beenreacted in the presence of methyl methacrylate and azobisisobutyronitrile to prepare reinforcedpolymers via radical polymerisation. The obtained materials exhibit swelling upon immersion intoorganic solvents up to 110% of their original size, in agreement with the presence of cluster-crosslinked polymeric chains. Also, no loss of transparency was observed in the preparation of the materials. The characteristic red emission of the Eu cluster in also retained in the polymeric material

    Discovery of 42 genome-wide significant loci associated with dyslexia

    Get PDF
    Funding: EE, GA, BM, BSP, CF and SEF are supported by the Max Planck Society (Germany). The Chinese Reading Study was supported by grants from the National Natural Science Foundation of China Youth Project (Grant No. 61807023), the Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (Grant No. 19YJC190023 and 17XJC190010), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JQ-309). SP is funded by the Royal Society.Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.Publisher PDFPeer reviewe

    Mathematical Modeling of Malaria Infection with Innate and Adaptive Immunity in Individuals and Agent-Based Communities

    Get PDF
    Background: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance: Our approach represents a novel, convenient and versatile method to model Plasmodiu

    Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria

    Get PDF
    Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR

    A Sub-Microscopic Gametocyte Reservoir Can Sustain Malaria Transmission

    Get PDF
    Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF), have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM).To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN), presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns. Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM) predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection) predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included.It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria
    • …
    corecore