487 research outputs found

    Short-term Self-Scheduling of Virtual Energy Hub Plant within Thermal Energy Market

    Get PDF
    Multicarrier energy systems create new challenges as well as opportunities in future energy systems. One of these challenges is the interaction among multiple energy systems and energy hubs in different energy markets. By the advent of the local thermal energy market in many countries, energy hubs' scheduling becomes more prominent. In this article, a new approach to energy hubs' scheduling is offered, called virtual energy hub (VEH). The proposed concept of the energy hub, which is named as the VEH in this article, is referred to as an architecture based on the energy hub concept beside the proposed self-scheduling approach. The VEH is operated based on the different energy carriers and facilities as well as maximizes its revenue by participating in the various local energy markets. The proposed VEH optimizes its revenue from participating in the electrical and thermal energy markets and by examining both local markets. Participation of a player in the energy markets by using the integrated point of view can be reached to a higher benefit and optimal operation of the facilities in comparison with independent energy systems. In a competitive energy market, a VEH optimizes its self-scheduling problem in order to maximize its benefit considering uncertainties related to renewable resources. To handle the problem under uncertainty, a nonprobabilistic information gap method is implemented in this study. The proposed model enables the VEH to pursue two different strategies concerning uncertainties, namely risk-averse strategy and risk-seeker strategy. For effective participation of the renewable-based VEH plant in the local energy market, a compressed air energy storage unit is used as a solution for the volatility of the wind power generation. Finally, the proposed model is applied to a test case, and the numerical results validate the proposed approach

    Special Issue on advanced approaches, business models, and novel techniques for management and control of smart grids

    Get PDF
    ©2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioimaton|en=nonPeerReviewed

    Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Get PDF
    The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments

    Reinforcement learning method for plug-in electric vehicle bidding

    Get PDF
    This study proposes a novel multi-agent method for electric vehicle (EV) owners who will take part in the electricity market. Each EV is considered as an agent, and all the EVs have vehicle-to-grid capability. These agents aim to minimise the charging cost and to increase the privacy of EV owners due to omitting the aggregator role in the system. Each agent has two independent decision cores for buying and selling energy. These cores are developed based on a reinforcement learning (RL) algorithm, i.e. Q-learning algorithm, due to its high efficiency and appropriate performance in multi-agent methods. Based on the proposed method, agents can buy and sell energy with the cost minimisation goal, while they should always have enough energy for the trip, considering the uncertain behaviours of EV owners. Numeric simulations on an illustrative example with one agent and a testing system with 500 agents demonstrate the effectiveness of the proposed method

    A conservative framework for obtaining uncertain bands of multiple wind farms in electric power networks by proposed IGDT-based approach considering decision-maker's preferences

    Get PDF
    Exploiting clean energy resources (CERs) is an applicable way to enhance sustainable development and have the cleaner production of electricity. On the other hand, variability and intermittency of these clean resources are the important disadvantages for determining the reliable operation of electrical grids. Thus, using the uncertainty modeling techniques seems necessary to have more practical values for the decision-making variables. The current paper demonstrates a novel architecture based on Information Gap Decision Theory (IGDT) to model the randomness of multiple Wind Farms (WFs) existing in electric power networks. Note that employing only the IGDT technique cannot consider the preferences defined by the decision-maker. In contrast, the proposed method tackles this issue by considering different values for radii of uncertainty related to the uncertain parameters. It has been proven that the presented approach is time-saving if compared with Monte Carlo Simulation (MCS) and the Epsilon-constraint-based-IGDT. Moreover, the execution time of the presented methodology does not considerably depend on the number of WFs for a power system. It means that if the number of WFs increases in a particular case study, consequently, the execution time does not noticeably rise if compared with the MCS and the Epsilon-constraint-based-IGDT. Furthermore, the equivalent Mixed Integer Linear Programming (MILP) of the original model is employed to guarantee the optimum solution. The performances of the presented methodology have been demonstrated by utilizing IEEE 30 BUS and IEEE 62 BUS systems.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Fault diagnosis in multi-machine power systems using the Derivative-free nonlinear Kalman Filter

    Get PDF
    In this paper a new approach to parametric change detection and failure diagnosis for interconnected power units is proposed. The method is based on a new nonlinear filtering scheme under the name Derivative-free nonlinear Kalman Filter and on statistical processing of the obtained state estimates, according to the properties of the statistical distribution. To apply this fault diagnosis method, first it is shown that the dynamic model of the distributed interconnected power generators is a differentially flat one. Next, by exploiting differential flatness properties a change of variables (diffeomorphism) is applied to the power system, which enables also to solve the associated state estimation (filtering) problem. Additionally, statistical processing is performed for the obtained residuals, that is for the differences between the state vector of the monitored power system and the state vector provided by the aforementioned filter when the latter makes use of a fault-free model. It is shown, that the suitably weighted square of the residuals’ vector follows the statistical distribution. This property allows to use confidence intervals and to define thresholds that demonstrate whether the distributed power system functions as its fault-free model or whether parametric changes have taken place in it and thus a fault indication should be given. It is also shown that the proposed statistical criterion enables fault isolation to be performed, that is to find out the specific power generators within the distributed power system which have exhibited a failure. The efficiency of the proposed filtering method for condition monitoring in distributed power systems is confirmed through simulation experiments

    Assessing the benefits of capacity payment, feed-in-tariff and time-of-use programme on long-term renewable energy sources integration

    Get PDF
    Recently, demand response programmes (DRPs) have captured great attention in electric power systems. DRPs such as time-of-use (ToU) programme can be efficiently employed in the power system planning to reform the long-term behaviour of the load demands. The composite generation expansion planning (GEP) and transmission expansion planning (TEP) known as composite GEP–TEP is of high significance in power systems to meet the future load demand of the system and also integrate renewable energy sources (RESs). In this regard, this study presents a dynamic optimisation framework for the composite GEP–TEP problem taking into consideration the ToU programme and also, the incentive-based and supportive programmes. Accordingly, the performances of the capacity payment and feed-in tariff mechanisms and the ToU programme in integrating RESs and reducing the total cost have been evaluated in this study. The problem has been formulated and solved as a standard two-stage mixed-integer linear programming model aimed at minimising the total costs. In this model, the ToU programme is applied and the results are fed into the expansion planning problem as the input. The proposed framework is simulated on the IEEE Reliability Test System to verify the effectiveness of the model and discuss the results obtained from implementing the mentioned mechanisms to support the RESs integration

    A fuzzy logic controller to increase fault ride-through capability of variable speed wind turbines

    Get PDF
    A fuzzy controller for improving Fault Ride-Through (FRT) capability of Variable Speed Wind Turbines (WTs) equipped with Doubly Fed Induction Generator (DFIG) is presented. The controller is designed in order to compensate the voltage at the Point of Common Coupling (PCC) by regulating the reactive and active power generated by WTs. The performances of the controller are evaluated in some case studies considering a different number of wind farms in different locations. Simulations, carried out on a real 37-bus Italian weak distribution system, confirmed that the proposed controller can enhance the FRT capability in many cases
    corecore