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Abstract: This study proposes a novel multi-agent method for electric vehicle (EV) owners who will take part in the electricity
market. Each EV is considered as an agent, and all the EVs have vehicle-to-grid capability. These agents aim to minimise the
charging cost and to increase the privacy of EV owners due to omitting the aggregator role in the system. Each agent has two
independent decision cores for buying and selling energy. These cores are developed based on a reinforcement learning (RL)
algorithm, i.e. Q-learning algorithm, due to its high efficiency and appropriate performance in multi-agent methods. Based on the
proposed method, agents can buy and sell energy with the cost minimisation goal, while they should always have enough
energy for the trip, considering the uncertain behaviours of EV owners. Numeric simulations on an illustrative example with one
agent and a testing system with 500 agents demonstrate the effectiveness of the proposed method.

1 Introduction
Nowadays, the environmental problem caused by excessive
consumptions of fossil fuels is one of the major challenges that
human being is facing. Due to this problem, electrifying
transportation becomes an emerging research trend in the fields of
power system, traffic planning and urban development [1], lead to
the proliferation of electric vehicles (EVs). The expected
penetration of EVs in the near future creates prospects for a
cleaner, more sustainable and more decarbonised future [2].

The charging impact of EVs is a recent issue on the power
system. Safety and reliability of power system would be challenged
with a high penetration of EVs [3] whose charging demand could
be highly volatile. Also, with a proper management scheme, these
EVs can be used as virtual energy storage for the power system [4].

Real energy storage systems can mitigate the real-time
imbalance between generation and consumption, but their
investments are also intensive. Thanks to the development of
cutting-edge technology in smart grid, accumulation of a large
quantity of EVs can support the power grid through the vehicle-to-
grid (V2G) mode. In addition to helping the network for operating
with low cost and high reliability, using V2G mode enables the EV
owners to reduce their energy cost, because they can sell their
surplus energy to the grid and make benefit. Due to impressive
effects of EVs on electrical network and in order to increase EV
owners’ welfare, various kinds of researches have been carried out
on this topic [5].

These researches can be categorised into two different subjects:
(i) EVs effects on the operation and planning of power systems, (ii)
EVs effects on cost reduction for owners.

There are two different paradigms for EV charging
management, namely, centralised charging and decentralised
charging. In the centralised methods, a central agent (e.g. an
aggregator) has been determined to directly control the
consumption of the end-users. The objective function to maximise
is the aggregator's profit and the main constraint is that of buying
enough energy for EV owners’ trips.

The centralised method is based on bidirectional
communication between end-users and the central agent/
aggregator. In order to participate in the electricity market, all the

required information about different EVs are transferred to a
central level, where the energy consumption is determined and
control signals are sent to individual EVs. By applying this
approach, an optimum decision with a minimum cost is reached;
however, it is not a suitable method for a large number of agents.
The increasing number of EVs in a fleet, the corresponding
optimisation problem would be complicated and challenging to
solve.

When using decentralised approaches, a high communication
level is not essential, but it should be enough for broadcasting
signals in order to control consumption, as indicated in [6–9].
However, unpleasing outcomes may happen, such as simultaneous
reactions, avalanche effects or errors in forecasting the consumer's
attitude in relation to the price signals. This occurs due to the fact
that the impact of the customers with demand response ability
(DR-Enabled) bids is not taken into account. Hence, this type of
strategy is probably only suitable at low penetrations [10].

A high communication level, with high speed, high reliability
and bidirectional communication, should apply for the
decentralised methods to avoid the aforementioned undesirable
outcomes. Due to a high communication level, the load
synchronisation does not represent anymore a problem when using
bidding process strategy [11].

The problem of load synchronisation can also be solved by an
iterative process as presented in [12, 13]. Each end-user must
determine its bidding price based on the energy demand for given
trip, and market clearing price signal is determined on the basis of
end-users bid.

In Table 1, the advantages and disadvantages of different
control methods are presented. Several references investigated
effects of EV and renewable energy resource (RES),
simultaneously. In [14], an EV charging policy is proposed that
considers transmission and distribution integration issues and
reacts to spatial and temporal market signals. 

In [15], a stochastic optimisation model is investigated for
optimal bidding strategies of EV aggregators in day-ahead energy
and ancillary service markets with variable wind energy. A system
integrating V2G, grid-to-vehicle and RESs with a converged fibre-
wireless (FiWi) communication infrastructure is investigated in
[16], and its performance is examined from perspectives in the
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communication level and physical (power system) level. The
effects of EVs and RESs on the environment and cost are studied in
[17]. If an aggregator manages EV energy demand appropriately,
the uncertainty of RESs can be managed. In [18], a method is
proposed for compensating the forecast errors of wind power plants
by using EVs. In [2], an approach for bidding into the day-ahead
electricity market is represented with the objective of minimising
the charging costs while satisfying the EVs’ flexible demand.

In [19], dynamic programming is proposed for developing a
decision support algorithm and a market participation policy for
charging scheduling of EVs connecting to a distribution network
feeder. A multi-layer model based on multi-agent systems (MASs)
and dynamic incomplete information game theory is developed in
[20] with the aim of investigating the electricity markets in a smart
grid environment, in which both the bidding strategy and demand
response (DR) programs are considered.

In [21], a Bayesian neural network is employed for predicting
the electricity prices. The primary goal of [21] is minimising the
long-term cost of charging the battery of an individual EV. In [22],
a strategy is proposed for implementing a MAS developed in Java
Agent Development framework for distribution systems with
intermittent distributed generators and EVs offering V2G. In [23],
an agent-based framework for studying the behaviour of a retail
market with DR is proposed by employing machine learning
techniques to model the behaviour of the agents at different levels
of a hierarchical framework, where Q-learning is employed to
solve the decision-making problem of the consumers. In [24], a
novel method for DR program based on Q-learning algorithm (QA)
is presented in order to achieve cost reduction. In [25], a mobility-
aware V2G control algorithm is proposed that considers the
mobility of EVs, states of charge of EVs and the estimated/actual
demands of MGs, and then determines charging and discharging
schedules for EVs. For obtaining the mobility of EVs and the
estimated/actual demand profiles of MGs, a reinforcement learning
(RL) approach is also introduced. Improving regulation
performance of EVs with an optimal control strategy for EVs based
on RL has been proposed in [26]. A RL algorithm is proposed in
[27] to learn an optimum cost reducing charging policy from a
dataset of historical transition samples and then it exploited to
make charging decisions in any situations.

Although various reports in the literature have been studied the
control and scheduling of EVs, a decentralised model based on QA

enabling V2G mode has not been addressed. In this paper, a novel
method for minimising EV cost is presented. In this method, each
agent has two decision cores for buying and selling energy. This
method guarantees end users privacy during participation in the
electricity market without any aggregator or central agent. An
efficient aggregator has a lot of information from EV owners.
Departure time, arrival time, fuel consumption, unexpected driving
and so on. Meanwhile, for this massive information exchanging
between the aggregator and EVs through communication networks,
gigantic infrastructure is needed. The power networks and
communication networks together compose a complicated network,
which needs control strategies designed to handle the interaction
between EVs and the smart grid [28]. Also, agents do not have any
information about each other for the sake of privacy.

Moreover, users have the freedom to choose participating in
only one market (sell or buy) or leaving the market. Another
benefit of this method is that EV owners do not get involved in the
bidding process.

As it said before, there are two decision cores and each core
work with QA. It works by learning an action-value function that
gives the expected utility of taking a given action in a given state
and following a fixed policy thereafter. The most two significant
strengths of the Q-learning are that it can compare the expected
utility of the available actions without modelling the environment
and it can be used on-line. Q-learning is well suited for solving
sequential decision problems, where the utilities of actions depend
on a sequence of decisions made and there exists uncertainty about
the dynamics of the environment [29].

Thus, the novel contributions of the proposed method can be
summarised as follows:

• In the proposed method, each agent has two decision cores to
buy and sell energy;

• The method guarantees end users privacy due to the
participation in the electricity market without any aggregator or
central agent. Users have the right to choose the participation in
only one market (sell or buy), or even to not participate in any
markets.

• EV owners do not get involved in the bidding process.

The rest of this paper is organised as follows. Section 2 describes
the problem formulation. In this section, the price of selling and
buying and the amount of the required energy are determined.
Furthermore, QA and the electricity market conditions are briefly
explained. In Section 3, an illustrative numerical study is
presented. This section has a simple example of one agent, as well
as a market with a constant price to illustrate how each agent acts
by using the proposed method. The main case study with 500
agents is described in Section 4, and simulation results are
presented. Finally, Section 5 concludes the paper.

2 Problem formulation
In this section, the mathematical formulation for modelling and
simulating EVs and the electricity market is presented. In general,
each agent wants to optimise its cost. Hence, it participates in the
electricity market to buy energy from it when the price is low (light
load time). Also, it can sell energy to electricity market with high
price (peak time) in order to make profit. So, agents can be buyer
and seller simultaneously. At the first step, the prices for buying
and selling energy are determined based on the previous state and
previous cost for each vehicle. After that, these agents participate
in the electricity market, and the amount of energy that each agent
buys or sells is determined. Then, those prices and the amount of
buying or selling energy are sent to the QA as input signals. This
RL algorithm determines the next state and the next action for each
agent. The specified reward for each agent is the total paying cost
that means the cost of buying energy minus benefits for selling
energy. Moreover, if the algorithm cannot provide enough energy
at the departure time, a significant penalty would be assigned in the
QA. With this penalty factor, the next state will be changed to
avoid failing in the next departure.

Table 1 Comparing advantages and disadvantages of
different control methods
Control method Advantages Disadvantages
centralised bidirectional

communication
• achieve optimal

outcomes
• scalability and

complexity for the
aggregator

• uncertainty for
different

consumers can
be better
managed

• high
communication
requirements
• user privacy

decentralised unidirectional
communication

• low
communication
requirements

• undesirable
outcomes, hence

the impact of
consumers

demand on the
prices is neglected

• properties of
battery modelled

in a more detailed
way

• only effective for
low agents
penetration

bidirectional
communication

• work close to
real-time and

agents’ demands
are taken into

account

• high
communication
requirements

• user privacy is
guaranteed
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Each agent tries to minimise its cost; however, this goal is hard
to achieve, because of the time-varying environment of the
electricity market, uncertain driving patterns and random energy
consumption for each trip. Moreover, an agent performs no action
between the departure and arrival times. It is assumed that EV
owners do not access the electricity market and smart pile between
the departure and arrival times.

The process of bidding and participating in the energy market is
presented in Fig. 1. 

The considered problem formulation can be represented by
considering three phases. In the first phase, an agent should
determine the required energy and bidding prices for buying energy
in the local electricity market. Agents should buy enough energy
for their trip before the departure time. Otherwise, a penalty factor
is applied to them. The second phase is related to the selling energy
to market for obtaining profit. EV owners should determine the
price of energy at which they want to sell to the electricity market.
The third phase that is somehow the main one, involves the QA. As
has been mentioned before, the proposed model has two decision
cores. Their functionalities are complementary: the one for buying
energy wants to purchase enough for the trip and the one for selling
wants to gain more profit; hence, it wants to determine a price so
that it can sell more energy to the electricity market. They are
related to each other with the penalty factor. If the agent did not
have enough energy for the trip the reward of the QA for both
cores is set to 1010.

2.1 Demand energy of electric vehicle

EV energy demand depends on the physical battery constraints, left
time to departure and a number of adjustable parameters that will
be further explained. The maximum and minimum charging power
for time step t are presented here with Pmin, v and Pmax, v, respectively.
They are calculated by taking both energy and power constraints
into account [6]

Pmax, v
t = min Cv − Ev

t − 1

ηvΔt , Pc, v (1)

Battery capacity for vehicle v defines here with Cv and Ev
t − 1

indicates the energy content at the end of the previous time step, ηv
the charging efficiency, Δt the duration of each time step, Pc, v the
maximum possible charging power and dv

t  is the left time to trip

Pmax, v
t = max min Ereq, v

t

ηvΔt − Pc, v(dv
t − 1), Pc, v , 0 (2)

Ereq, v
t  is the required energy for the trip with considering the present

energy of battery, and can be calculated as

Ereq, v
t = max 0, Edep, v

t − Ev
t − 1 (3)

In this part of formulation, demand energy and bidding price are
determined. There are two possibilities for (2):

Possibility 1: 
Ereq, v

t

ηvΔt > Pc, v dv
t − 1  In this case, the required

energy is more than the maximum charging possibility and the
minimum energy cannot be zero.

Possibility 2: 
Ereq, v

t

ηvΔt < Pc, v dv
t − 1  In this case, the required

energy is less than the maximum charging possibility and the
minimum energy in this time step is zero. Hence, buying energy is
not urgent and agents can wait for less price in the electricity
market.

It is obvious from (2), the value of Pmin, v
t  is either zero or

positive. If Pmin, v
t  is greater than zero, the charging is necessary in

order to be able to depart with a desired battery content. Pmin, v
t

should not be lower than Edep, v
t , where Edep, v

t  is the energy that
needs to be in the battery for the next departure. In this paper, the
required energy for departure is determined randomly, and thus it is
independent of the trip time. Each EV determines prices for buying
and selling with two bid blocks. Pmin, v

t  is equal to zero when the
charging of an EV is completely flexible. If the vehicle does not
have any interactions with the electricity market at the given time
step, then Pmax

t = Pmin, v
t  = 0 clearly holds. This is similar for the

agents who have full battery energy. In (4), the intermediate point
from Pmin, v

t  and Pmin, v
t  is determined as the energy that agents want to

buy from market. In this paper, the bid function has only two
blocks, although it can have more blocks without loss of generality.
The bid price of the second block, denoted as Pb, v

t  is defined as a
function of the charging urgency and two tuning parameters
Pav, Pbv. Each pair of (Pav, Pbv) is defined as a buy state in QA

Pint, v
t = (Pmax, v

t + Pmin, v
t )/2 (4)

Pb, v
t = Pav + Pbv

Ereq, v
t

ηvPc, v
(5)

These two parameters are the fraction of the energy that needs to be
charged for the next trip and the energy that could potentially be
charged until departure [17]. Pav is an agent interest for buying
energy from the market. If the vehicle has charged more than what
it needs for the next trip, Ereq, v

t  is zero. However, it might still want
to charge further if prices are low enough. This is the case when
prices fall below parameter Pbv.

There is a limitation for agents that want to buy energy from the
market. Moreover, their bidding price should be higher than the
market price. In this equation, EBuyF, i, t is the final energy that agent
i buys in hour t. EL is the energy limitation assigned for these
agents. If an agent cannot buy enough energy, its trip would fail
and as a ‘reward’, it gets a high penalty. Hence, the agent learns to
forecast price more precisely and bid appropriately

∑
i = 1

n
EBuyF, i, t ≤ EL (6)

2.2 EV sell energy

If vehicle owners want to use V2G option, they should participate
in the electricity market and sell their surplus energy to the grid.

QA core for selling energy should guarantee that the EV has
enough energy for the departure. Moreover, if unpredictable
evidence happens for EV owners and they have to drive more than
what they predicted, the battery should have enough energy to

Fig. 1  Diagram of participating in the electricity market
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cover this extra energy usage. In this case, a security coefficient α
is considered for selling less energy to the grid. With increasing or
decreasing α , the cost and the battery energy reliability for
unpredictable events can be adjusted. As already mentioned, an
agent does not take any action between departure and arrival times.
The price that each agent bids and participates with it in the
electricity market is based on the consumption level. Hence, each
agent will have a multiple price rating according to its consumption
level.

The formulation considers two different positive constant
variables similar to Section 2.1. One is independent of any other
variables, and the other is divided into the agents left time hour.
Ps, v

t  is the agent bidding price for selling energy in the electricity
market and Esell, v

t  is the energy that EV can sell to the grid due to
security coefficient

Ps, v
t = Sav + Sbv

Ereq, v
t

ηvPc, v
(7)

Esell, v
t = Ev

t − 1 − 1 + α * Edep, v
t (8)

Sav represents the agents’ interest in selling energy, i.e. the price
that agents consider to be high enough to sell energy even if there
is an urgency for the next departure. Sbv  represents the sensitivity
to the urge of buying energy of the willingness to buy electricity.
Meanwhile, the state variables depend on the energy requirement;
actions may have a wider range of values previously defined. Each
pair of (Sav, Sbv) is defined as a sell state in QA.

2.3 Bidding strategy and reinforcement learning

For running in an environment with different agents, RL can be
beneficial. With RL these agents can take actions to maximise their
cumulative rewards. With this objective function, they all take
actions appropriately. RL is the problem faced by an agent that
must learn behaviour through trial-and-error interactions within a
dynamic environment [30]. Q-learning is a model-free RL
algorithm, and it is typically easier to implement especially in a
time-varying environment [31].

In this paper, each EV is defined as an agent. Agents try to
place bids and determine the required energy for buying and selling
optimally. Each agent has two decision cores, and each core learns
how to act optimally based on the QA. Therefore, each agent can
buy and sell energy in each time step simultaneously.

Before further explanation about the application of QA some
terms should be defined:

• Action: The set of all possible moves for agents. It is obvious
that there is a set of all possible actions and each agent should
select its action among the list.

• State (S): A state is a specific place that an agent fined itself.
States for each agent will change by using different actions.

• Reward (R): The success or failure of an agent is measured by
reward. An agent sends output in the form of actions to the
environment, and the environment returns the agent's new state
(which resulted from acting on the previous state) as well as
rewards, if there are any. Hence, evaluating agent's action is
done by rewards.

When agent i is modelled by a QA, it keeps in memory a function
Qi: Ai → R such that Qi ai  means that it will obtain the expected
reward if it plays action ai. Agents always observe the
environment and each agent plays the action that leads to the
highest reward. After each action and calculation the obtained
reward Qi is going to be updated. For example, if agents play the
game for tth time, the joint action (a1

t, …, an
t ) represents the

actions that different agents have taken. After each episode,
different rewards for each agent ri  are obtained and then each
agent updates its Qi-function according to the following equation:

Qi ai
t ← Qi ai

t + λi
t ri a1

t, …, an
t − Qi ai

t (9)

where λi
t ∈ 0, 1  is the correction degree for QA. If λi

t = 1, the
agent supposes that the expected reward that it gets by taking
action ai = ai

t  in the next episode is equal to the reward it just
observed. Hence, there is not any update in the Qi value and agents
always play the same action. Otherwise, if λi

t = 0, the agent does
not take account its last observation to update the value of its Qi-
function. In this paper, λi

t is always assumed to be 0.9.
Regarding the fact that the QA provides the agent information

to know the most profitable actions, a policy for decision making is
required. In this paper, ɛ-greedy policy has been used. With this
policy, agents will not exploit just the available information, and
with (1 − ɛ) probability a random available action is selected.

Fig. 2 shows the flowchart of the algorithm that simulates RL
driven agents interacting with a matrix game. The number of
games after which the simulation should be stopped (step 8 of the
algorithm) depends on the purpose of the study. 

2.4 Driving behaviours

Driving behaviour is highly uncertain. In this paper, we assumed
three different variables for each agent. These variables consist of
departure time, arrival time and energy consumption for the trip.
Also, for the sake of simplicity, it is a general assumption that each
agent has only one trip during a day. This is not a substantial
barrier and multiple trips can be easily considered in the model. All
variables are modelled by the probability density function of
Gaussian distribution. The interval for departure time is between
(4, 7) and for arrival time is (16, 22). The energy that each agent
consumes during its trip is between (0, 16).

2.5 Electricity market

When considering a V2G approach for all agents, they should
interact with the electricity market for buying and selling energy.
These interactions benefit both the grid and the consumers. For the
power grid, EV batteries play the role of energy storage and
contribute DR capabilities which shave the peak and fill the valley.

Fig. 2  Algorithm of RL agents interacting with a matrix game
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For EV owners, they can buy cheap energy during off-peak hours
and sell it to the grid during peak hours.

Two different kinds of electricity markets are assumed in this
paper. The first one is for agents that wish to sell energy to the
network. Due to many advantages that the buying energy bring for
the network owner, there is not any limitation on that. Buying
energy from the market increases the reliability, shaving peak
power and also reduces the total loss. Hence, as long as an agent
has extra energy for selling to the network, the electricity market
buys it. The second market is for selling energy to the agents.

Unlike selling energy, buying energy has a limitation. This
limitation is based on the total number of agents. So, each agent
should bid appropriately. If the bidding price for buying energy
from the market is always low, it may not be able to buy enough
energy for completing its trip, which will be penalised in turn.

3 Illustrative numerical studies
In this section, a static environment with a single agent and specific
electricity market price is presented for illustrating the strong
ability of QA to learn how to act optimally. For simulating the
simple static environment, there are some assumptions as follows:

i. Departure time is always at 6:00 AM.
ii. Arrival time is always at 5:00 PM.
iii. Energy usage for the trip is always 11.8 kW.
iv. The agent has no limitation for selling energy to the electricity

market.
v. Price for buying energy from the market across the day is

shown in Fig. 3, and remains unchanged during 1000 days.
vi. There are 100 different states for determining the buying and

selling prices.
vii
.

States for selling and buying are similar.

QA with ɛ-greedy policy is employed in this example with three
different quantities. The total benefit for this agent and different
amounts of ɛ is represented in Figs. 4a–c. In these figures, each
iteration represents average benefit of 10 days. The strength of QA
can be observed in these figures. With exploiting the environment,
the benefit of this agent has ascending trend. As can be seen, with
increasing ɛ, more exploiting has occurred, but the final results for
all of these cases are not considerably different. 

A more accurate study on ɛ is carried out in the following. It is a
simple example of a static environment with a single agent who
wants to maximise its benefit. In Fig. 5, bidding price for
participating in the electricity market is plotted by the red line. The
first price that the agent bids to the electricity market for buying
energy is about 0.5 €/kWh. The core of buying energy has about
50% reduction. Also, the price for selling energy increases about
0.02 €/kWh. 

Optimum ɛ can vary based on the nature of the problem. For
determining the best amount of ɛ in this case study, a simple test
has been carried out. In this test, the previous study repeats ten
times and the result of the average cost for each iteration is
demonstrated in Table 2. If ɛ = 0.01, due to less exploration, the
agent cannot change its state during 1000 iterations. Hence, it was
a risky decision for setting ɛ = 0.01. 

Depending on the agent's initial state, either desirable or
unfavourable outcomes could happen. If ɛ is set to 0.05, outcomes
for ten repetitions are smooth due to high exploration ability.
Although an agent should pay the electrical energy cost, the
average cost is still higher than the one with ɛ = 0.1. Hence, it
seems 0.1 is an appropriate value of ɛ in this case. Moreover, there
is a limitation on the contribution of EVs in the electricity market.
For determining this amount, another simple example with 100
agents has been performed. All seven assumptions that mentioned
in the previous example are still authentic. In Fig. 6, the percentage
of the agents which failed on their trips due to different EL is
presented. Due to learning behaviour of the electricity market and
other agents, these are descending diagrams. 

If EL assigns to 100 kWh, about 90% of agents have failed on
their trips. With increasing their contribution, the percentage of the

Fig. 3  Daily electricity market price
 

Fig. 4  Simulation results for the illustrative example and comparing
different ɛ on average benefit

 

Fig. 5  Agents bidding price for buy and sell energy
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failed agents decreases. If EL determines 1000 kWh, only in the
first iteration failing the agents has occurred, and in the rest of
iterations there are no failed agents. Another notable occurrence is
that agents learn to minimise their trip failure, so there is a
descending trend for each share of energy. Hence, each agent
should be prudent and use proper strategy for buying energy. If its
bid is too low to buy energy from the market, there is not enough
energy for the trip, and the trip can fail. For avoiding this incident,
a substantial penalty factor is determined for each agent.

According to these results, it seems 800 kWh to be an
appropriate amount for assigning to agents. With this limitation,
the average benefit begins from −17€ to −0.7€.

4 Numerical study
In the case study with configurations of practical interests, 500
agents and dynamic electrical price retrieved from real data in the
Spanish electricity market are considered. The aim of all agents is
reducing their cost by implementing QA. It is assumed that all
agents share the same battery capacity of 16 kWh. Pc,v parameter
that mentioned in (1) is 13.7 kW all the time. Sometimes
unpredictable events can occur, thus there should be enough energy
in the battery. Hence, a security coefficient is assumed in (8). With
this coefficient, although they sell less energy to the market, there
is always enough energy in the battery.

There are 100 different states for participating in the electricity
market. Bidding processes for buying energy or selling energy is
different. As mentioned before, we assigned two different cores for
each agent that can choose two different states for buying and
selling. Price set for Pav and Sav consists of 5 different prices, and
for Pbv and Sbv consists of 20 different prices; hence, there are
100 different states for bidding and participating in the energy
market.

As what was said in Section 3, the electricity market buys all of
the energy that each agent wants to sell to the grid but it determines
a limitation for selling to this agent. This limitation determines
3000 kWh for each hour. With increasing this limitation, the
number of agents that failed is reduced. Based on this limitation,
some agents cannot afford sufficient energy and their trips have
failed. Five hundred agents are considered in this case study. It is
not a limitation and number of agents can increase without
increasing much complexity. Spanish electricity market is
simulated here for 732 days (two years). Driving pattern for each
agent is generated randomly for every day. Also, agent's driving
pattern is not similar to each other. Three scenarios are specified in
this paper as follows:

• Scenario 1 – Bidding price for each agent is constant during a
day,

• Scenario 2 – Bidding price for each agent can change three
times during a day,

• Scenario 3 – Bidding price for each agent can change in every
period during a day.

Scenario 1 represents the fixed-rate strategy. On this basis, in this
scenario, each agent picks a state for buying energy and another
one for selling energy to the market. Hence, the bidding price is
constant in different hours for a day. After determining the price,
they participate in the electricity market for providing enough
energy for the trip. The cost of buying energy from the market,
selling energy and absolute payment are presented in Fig. 7a. The
average cost for each agent is about 5.5€ per day. 

Scenario 2 represents the time of use strategy. Therefore, in this
scenario, each agent determines a state for participating in the
electricity market. Afterwards, an algorithm is run to calculate
three different weights for determining the price in three time
segments based on last week price. These time segments are
[00:08, 08:16, 16:24]. Therefore, bidding prices remain constant
for eight hours. These weights are similar for selling and buying,
and they come from the previous week. The average cost for this
scenario is decreased as presented in Fig. 7b. In the first day, 223
agents are failed on their trip, but after some iteration, the failed
agents decrease to less than ten agents.

Scenario 3 represents the dynamic tariff strategy. In this
scenario, after picking a state for buying and selling energy, 24
weights produced based on the previous week. This scenario has
the minimum average cost within all scenarios. The result of this
scenario is shown in Fig. 8. The average cost for each agent for two
years is presented in Fig. 8a. The average cost for agents in this
scenario is about 4.8€. In Fig. 8b, the number of agents that failed
during each day is illustrated. 

As aforementioned, the number of failed agents can increase or
decrease by changing the market limitation. In Fig. 8c, the bidding
price for two sample agents (agents no. 20 and no. 60) for buying
energy is presented for 72 h (day 99 to day 101). State of the
charge (SOC) for agent no. 20 and no. 60 is presented in Fig. 8d for

Table 2 Comparing different ɛ value in average cost for ten
repetitions
No. ɛ = 0.01 ɛ = 0.05 ɛ = 0.1
1 0.264 0.462 0.041
2 0.252 0.524 0.257
3 0.306 0.299 0.517
4 0.287 0.417 0.609
5 0.190 0.512 −0.965
6 0.225 0.496 0.621
7 0.123 0.423 0.505
8 0.296 0.499 −0.339
9 0.207 0.534 −0.528
10 0.076 0.482 0.616

 

Fig. 6  Percentage of fail agents due to different EL
 

Fig. 7  Average cost in two scenarios
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the same period. The minimum SOC is considered zero in this
study.

The descending trend of failing agents is shown in Fig. 9 for
three scenarios. The first scenario is shown with blue line. In the
first day, more than 200 agents failed on their trip, but in all
scenarios the number of failed agents decreases to <4% after some
iterations. 

Moreover, in Table 3, the average cost for different scenarios is
presented. If the bidding price for buying and selling energy can
change in every period during a day, the lowest cost is achieved. 

5 Conclusion

In this paper, a novel method for minimising EVs energy cost with
V2G ability was presented. In this method, each EV is defined as
an agent that had two decision cores for buying and selling energy
to the market. The first one tried to minimise its cost, while the
second one maximised its benefit due to adjusting its price. Each
core applied QA for decision making and each agent had individual
driving behaviour. In this method, no central agents/aggregator was
involved, thus the privacy of EV owners was completely
guaranteed. Several numerical studies were investigated. At first,
with an illustrative numerical study in a static environment, the
strength of this method was demonstrated. The results showed that,
by applying QA for participating in the electric market, the agent
should not have paid for the energy and, in some cases, it could
even gain monetary benefits. Then, the number of agents was
increased and the ascending trend for the average benefit was
noticeable. For evaluating this method in the real world, a dynamic
electricity market was simulated with stochastic driving behaviour.
Moreover, three different scenarios were defined, and agents could
choose any one of them. In all the scenarios, the average cost for
the agent was close to zero. Therefore, with two intelligent cores
for participating in the electric market, the cost of energy exhibited
significant reduction and in some cases the agents could benefit
monetarily.
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