495 research outputs found

    Recombinant factorVIII Fc fusion protein for the prevention and treatment of bleeding in children with severe hemophilia A

    Get PDF
    This work was supported by funding from Biogen, including funding for the editorial and writing support in the the development of this paper

    Aspects of Non-minimal Gauge Mediation

    Full text link
    A large class of non-minimal gauge mediation models, such as (semi-)direct gauge mediation, predict a hierarchy between the masses of the supersymmetric standard model gauginos and those of scalar particles. We perform a comprehensive study of these non-minimal gauge mediation models, including mass calculations in semi-direct gauge mediation, to illustrate these features, and discuss the phenomenology of the models. We point out that the cosmological gravitino problem places stringent constraints on mass splittings, when the Bino is the NLSP. However, the GUT relation of the gaugino masses is broken unlike the case of minimal gauge mediation, and an NLSP other than the Bino (especially the gluino NLSP) becomes possible, relaxing the cosmological constraints. We also discuss the collider signals of the models.Comment: 56 pages, 8 figures; v2:minor corrections, references added; v3:minor correction

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    Higgs and Dark Matter Hints of an Oasis in the Desert

    Get PDF
    Recent LHC results suggest a standard model (SM)-like Higgs boson in the vicinity of 125 GeV with no clear indications yet of physics beyond the SM. At the same time, the SM is incomplete, since additional dynamics are required to accommodate cosmological dark matter (DM). In this paper we show that interactions between weak scale DM and the Higgs which are strong enough to yield a thermal relic abundance consistent with observation can easily destabilize the electroweak vacuum or drive the theory into a non-perturbative regime at a low scale. As a consequence, new physics--beyond the DM itself--must enter at a cutoff well below the Planck scale and in some cases as low as O(10 - 1000 TeV), a range relevant to indirect probes of flavor and CP violation. In addition, this cutoff is correlated with the DM mass and scattering cross-section in a parameter space which will be probed experimentally in the near term. Specifically, we consider the SM plus additional spin 0 or 1/2 states with singlet, triplet, or doublet electroweak quantum numbers and quartic or Yukawa couplings to the Higgs boson. We derive explicit expressions for the full two-loop RGEs and one-loop threshold corrections for these theories.Comment: 29 pages, 13 figure

    Fair scans of the seesaw. Consequences for predictions on LFV processes

    Get PDF
    Usual analyses based on scans of the seesaw parameter-space can be biassed since they do not cover in a fair way the complete parameter-space. More precisely, we show that in the common "R-parametrization", many acceptable R-matrices, compatible with the perturbativity of Yukawa couplings, are normally disregarded from the beginning, which produces biasses in the results. We give a straightforward procedure to scan the space of complex R-matrices in a complete way, giving a very simple rule to incorporate the perturbativity requirement as a condition for the entries of the R-matrix, something not considered before. As a relevant application of this, we show that the extended believe that BR(mu --> e, gamma) in supersymmetric seesaw models depends strongly on the value of theta_13 is an "optical effect" produced by such biassed scans, and does not hold after a careful analytical and numerical study. When the complete scan is done, BR(mu --> e, gamma) gets very insensitive to theta_13. Moreover, the values of the branching ratio are typically larger than those quoted in the literature, due to the large number of acceptable points in the parameter-space which were not considered before. Including (unflavoured) leptogenesis does not introduce any further dependence on theta_13, although decreases the typical value of BR(mu --> e, gamma).Comment: 22 pages, 5 figure

    Relic densities including Sommerfeld enhancements in the MSSM

    Get PDF
    We have developed a general formalism to compute Sommerfeld enhancement (SE) factors for a multi-state system of fermions, in all possible spin configurations and with generic long-range interactions. We show how to include such SE effects in an accurate calculation of the thermal relic density for WIMP dark matter candidates. We apply the method to the MSSM and perform a numerical study of the relic abundance of neutralinos with arbitrary composition and including the SE due to the exchange of the W and Z bosons, photons and Higgses. We find that the relic density can be suppressed by a factor of a few in a seizable region of the parameter space, mostly for Wino-like neutralino with mass of a few TeV, and up to an order of magnitude close to a resonance.Comment: 23 pages, 7 figures; table 1 corrected and rearranged, numerical results practically unchanged, matches published versio

    Inflation and dark matter in two Higgs doublet models

    Get PDF
    We consider the Higgs inflation in the extension of the Standard Model with two Higgs doublets coupled to gravity non-minimally. In the presence of an approximate global U(1) symmetry in the Higgs sector, both radial and angular modes of neutral Higgs bosons drive inflation where large non-Gaussianity is possible from appropriate initial conditions on the angular mode. We also discuss the case with single-field inflation for which the U(1) symmetry is broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity and stability conditions restrict the parameter space of the Higgs quartic couplings at low energy in both multi- and single-field cases. Focusing on the inert doublet models where Z_2 symmetry remains unbroken at low energy, we show that the extra neutral Higgs boson can be a dark matter candidate consistent with the inflationary constraints. The doublet dark matter is always heavy in multi-field inflation while it can be light due to the suppression of the co-annihilation in single-field inflation. The implication of the extra quartic couplings on the vacuum stability bound is also discussed in the light of the recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added, references added and typos corrected, to appear in Journal of High Energy Physic

    Viability of MSSM scenarios at very large tan(beta)

    Full text link
    We investigate the MSSM with very large tan(beta) > 50, where the fermion masses are strongly affected by loop-induced couplings to the "wrong" Higgs, imposing perturbative Yukawa couplings and constraints from flavour physics. Performing a low-energy scan of the MSSM with flavour-blind soft terms, we find that the branching ratio of B->tau nu and the anomalous magnetic moment of the muon are the strongest constraints at very large tan(beta) and identify the viable regions in parameter space. Furthermore we determine the scale at which the perturbativity of the Yukawa sector breaks down, depending on the low-energy MSSM parameters. Next, we analyse the very large tan(beta) regime of General Gauge Mediation (GGM) with a low mediation scale. We investigate the requirements on the parameter space and discuss the implied flavour phenomenology. We point out that the possibility of a vanishing Bmu term at a mediation scale M = 100 TeV is challenged by the experimental data on B->tau nu and the anomalous magnetic moment of the muon.Comment: 29 pages, 7 figures. v2: discussion in sections 1 and 4 expanded, conclusions unchanged. Matches version published in JHE
    • 

    corecore