198 research outputs found

    Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America

    Get PDF
    We use high-frequency in situ observations made from the DC8 to examine fine-scale tracer structure and correlations observed in the upper troposphere and lower stratosphere during INTEX-NA. Two flights of the NASA DC-8 are compared and contrasted. Chemical data from the DC-8 flight on 18 July show evidence for interleaving and mixing of polluted and stratospheric air masses in the vicinity of the subtropical jet in the upper troposphere, while on 2 August the DC-8 flew through a polluted upper troposphere and a lowermost stratosphere that showed evidence of an intrusion of polluted air. We compare data from both flights with RAQMS 3-D global meteorological and chemical model fields to establish dynamical context and to diagnose processes regulating the degree of mixing on each day. We also use trajectory mapping of the model fields to show that filamentary structure due to upstream strain deformation contributes to tracer variability observed in the upper troposphere. An Eulerian measure of strain versus rotation in the large-scale flow is found useful in predicting filamentary structure in the vicinity of the jet. Higher-frequency (6–24 km) tracer variability is attributed to buoyancy wave oscillations in the vicinity of the jet, whose turbulent dissipation leads to efficient mixing across tracer gradients

    DREDed Anomaly Mediation

    Full text link
    We offer a guide to dimensional reduction (DRED) in theories with anomaly mediated supersymmetry breaking. Evanescent operators proportional to epsilon arise in the bare Lagrangian when it is reduced from d=4 to d= (4-2 epsilon) dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.Comment: 24 pages. 10 figures. Uses Axodraw. Reference adde

    Response to freshwater inflow in the Rappahannock Estuary, Virginia : Operation HIFLO \u2778

    Get PDF
    More sediment, nutrients and pollutants are discharged into an estuary during a few days of flood inflow than during many months or years of average inflow (Meade, 1972; Schubel, 1977), but few observations document the sedimentary response of an estuary to high freshwater inflow. Such inflows are usually unexpected and estuarine water charact~ristics change too rapidly to permit systematic measurements. Moreover, the expenditure of effort and number of sampling vessels required on short notice is beyond the resources of a single research group or institute. Yet, freshwater inflow observations are a key to improving water quality; especially to ameliorate the effects of high turbidity, depleted oxygen and low salinity which can cause oyster motalities (Zaborski and Haven, 1980). Many si9nificant ecological effects are noted by Snedakar, et al., 1977. Exceptional sediment deposition shoals shipping channels, fills boat basins, and blanke~ts oyster grounds. Suspended sediments adsorb toxic contaminates, nutrients and organic matter, and thus can affect plant production and the distribution of shellfish, plants and other life. The HIFLO experiment was planned to observe and evaluate the response of an estuary to high freshwater inflow and high influx of suspended sediment. Of special interest are the questions: How far seaward does the sediment load from an event go before settling to the bed? How do the hydrodynamic conditions for sediment transport change? What is the sequence of estuarine processes triggered by a river flood

    Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America

    Get PDF
    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the continental United States during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during INTEX-A show that RAQMS captures the main features of the global and continental U.S. distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the continental U.S. export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental U.S. photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24%, with NOx + PAN accounting for 54% of the total NOy export during INTEX-A. Copyright 2007 by the American Geophysical Union

    Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    Get PDF
    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the Standard Model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs mass over a wide range of renormalization scales is found to be of order a few hundred MeV or less, and is significantly improved over previous approximations.Comment: 5 pages, 1 figure. References added, sample test model parameters listed, minor wording change

    Scale-independent mixing angles

    Get PDF
    A radiatively-corrected mixing angle has to be independent of the choice of renormalization scale to be a physical observable. At one-loop in MS-bar, this only occurs for a particular value, p*, of the external momentum in the two-point functions used to define the mixing angle: p*^2=(M1^2+M2^2)/2, where M1, M2 are the physical masses of the two mixed particles. We examine two important applications of this to the Minimal Supersymmetric Standard Model: the mixing angle for a) neutral Higgs bosons and b) stops. We find that this choice of external momentum improves the scale independence (and therefore provides a more reliable determination) of these mixing angles.Comment: 14 pages, 11 ps figures Version to appear in PR

    Focus Points and Naturalness in Supersymmetry

    Full text link
    We analyze focus points in supersymmetric theories, where a parameter's renormalization group trajectories meet for a family of ultraviolet boundary conditions. We show that in a class of models including minimal supergravity, the up-type Higgs mass has a focus point at the weak scale, where its value is highly insensitive to the universal scalar mass. As a result, scalar masses as large as 2 to 3 TeV are consistent with naturalness, and {\em all} squarks, sleptons and heavy Higgs scalars may be beyond the discovery reaches of the Large Hadron Collider and proposed linear colliders. Gaugino and Higgsino masses are, however, still constrained to be near the weak scale. The focus point behavior is remarkably robust, holding for both moderate and large \tan\beta, any weak scale gaugino masses and A parameters, variations in the top quark mass within experimental bounds, and for large variations in the boundary condition scale.Comment: 30 pages, 17 figure

    |Delta B|=1 Weak Effective Lagrangian in the Minimal Flavor Violation Supersymmetry

    Full text link
    To evaluate the weak decays of b-hadrons, the ΔB=1\Delta B=1 weak effective Lagrangian is the foundation. Any new physics beyond the standard model (SM) would contribute to the effective Lagrangian through the loop integration at the weak scale and evolution from the weak scale down to the hadronic scale. In this work we present a systematic analysis on the effective Lagrangian which mediates hadronic ΔB=1|\Delta B|=1 processes in the framework of the minimal flavor violation supersymmetry as well as a numerical evaluation of the Wilson coefficients in the effective theory.Comment: Latex,16 pages plus 5 figures, PRD versio

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure
    corecore