74 research outputs found

    Anwendung der hochauflösenden Laserspektroskopie zur Untersuchung der Energieniveaustruktur und der Elektron - Phonon - Wechselwirkung im lichtsammelnden Komplex II grüner Pflanzen

    Get PDF
    Hole-Burning (HB) und Fluorescence Line-Narrowing (FLN) bei 4.2 K sowie Experimente zur Temperaturabhängigkeit werden angewendet, um Energieniveaustruktur und Elektron-Phonon- Wechselwirkung im Antennenkomplex LHC II grüner Pflanzen zu untersuchen. Besondere Aufmerksamkeit gilt dabei der Vermeidung systematischer Meßfehler durch Reabsorption von Fluoreszenz oder durch Lichtstreuung und unerwünschtes Lochbrennen bei FLN-Experimenten. Durch die Auswertung von Lochspektren können erstmals drei niederenergetische elektronische Zustände bei 677.1, 678.4 und 679.8 nm nachgewiesen werden. Die inhomogene Breite der zugehörigen Absorptionsbanden beträgt etwa 4 nm. Wahrscheinlich stellt jeder dieser Zustände das tiefste Energieniveau einer Untereinheit des LHC II-Trimers dar und ist weitgehend an jeweils einem Chl a-Molekül lokalisiert. Die energetische Differenz zwischen den drei Zuständen kann durch strukturelle Heterogenität erklärt werden. Es kann nachgewiesen werden, daß die Meßergebnisse praktisch frei von Effekten durch unerwünschte Aggregation sind. Die homogene Linienbreite des energetisch tiefsten Zustandes bei 4.7 K wird vorwiegend durch phasenzerstörende Prozesse (pure dephasing) bestimmt. Die Lochbreiten innerhalb der 650 nm Absorptionsbande entsprechen Chl b-Chl a Energietransferzeiten von 1 ps und etwa 240 fs bei 4.2 K, während Lochbreiten innerhalb der 676 nm Absorptionsbande Chl a-Chl a Energietransferzeiten in der Größenordnung von 6-10 ps ergeben. In einer theoretischen Betrachtung werden die Beiträge zu Phonon-Seitenbanden bei HB und FLN separat analysiert. Auf dieser Grundlage können Ergebnisse von HB und FLN Experimenten an LHC II erstmals in einem konsistenten Modell durch schwache Elektron-Phonon-Wechselwirkung mit einem Huang-Rhys-Faktor von 0.9 und ein breites, stark asymmetrisches Ein-Phonon-Profil erklärt werden.Spectral hole-burning (HB) is combined with fluorescence line-narrowing (FLN) experiments at 4.2 K and studies of temperature-dependent fluorescence spectra in order to investigate low-energy level structure as well as electron-phonon coupling of the LHC II antenna complex of green plants. Special attention has been paid to eliminate effects owing to reabsorption of fluorescence and to assure that the FLN spectra are virtually unaffected by hole-burning or scattering artifacts. For the first time, analysis of the 4.2 K hole spectra reveals three low-energy electronic states at 677.1, 678.4 and 679.8 nm, respectively. The inhomogeneous width of their absorption bands is approximately 4 nm. It is likely that each of these states is associated with the lowest energy state of one trimer subunit with the energetic separations being due to structural heterogeneity. It is likely that each of the low-energy states is highly localized on a single Chl a molecule of the corresponding trimer subunit. The results are shown to be virtually free from aggregation effects. The homogeneous width for the lowest state at 4.7 K is predominantly due to pure dephasing. Widths of holes burned into the 650 nm absorption band correspond to Chl b-Chl a energy transfer times of 1 ps and about 240 fs at 4.2 K while holewidths for the 676 nm absorption band lead to Chl a-Chl a energy transfer times in the 6-10 ps range. The complexities associated with the interpretation of the phonon structure in HB and FLN spectra are discussed by theoretically analyzing the different phonon sideband contributions. On this basis, 4.2 K HB and FLN data can be consistently interpreted for the first time by weak electron-phonon coupling with a Huang-Rhys factor of about 0.9 to protein phonons with a broad and strongly asymmetric one- phonon profile

    Dietary bioactive lipid compounds rich in menthol alter Interactions among members of ruminal microbiota in sheep

    Get PDF
    This study aimed to investigate the effects of two practically relevant doses of menthol-rich plant bioactive lipid compounds (PBLC) on fermentation, microbial community composition, and their interactions in sheep rumen. Twenty-four growing Suffolk sheep were divided into three treatments and were fed hay ad libitum plus 600 g/d of concentrate containing no PBLC (Control) or PBLC at low dose (80 mg/d; PBLC-L) or high dose (160 mg/d; PBLC-H). After 4 weeks on the diets, samples of ruminal digesta were collected and analyzed for short-chain fatty acid (SCFA), ammonia, and microbiota; microbiota being analyzed in the solid and the liquid digesta fractions separately. Ruminal SCFA and ammonia concentrations were not affected by the PBLC treatments. The microbiota in the solid fraction was more diverse than that in the liquid fraction, and the relative abundance of most taxa differed between these two fractions. In the solid fraction, phylogenetic diversity increased linearly with increased PBLC doses, whereas evenness (lowest in PBLC-L) and Simpson diversity index (greatest in PBLC-H) changed quadratically. In the liquid fraction, however, the PBLC supplementation did not affect any of the microbial diversity measurements. Among phyla, Chloroflexi (highest in PBLC-L) and unclassified_bacteria (lowest in PBLC-L) were altered quadratically by PBLC. Lachnospiraceae, Bacteroidaceae (increased linearly), BS11 (increased in PBLC-L), Christensenellaceae (decreased in PBLC treatments), and Porphyromonadaceae (increased in PBLC treatments) were affected at the family level. Among genera, Butyrivibrio increased linearly in the solid fraction, YRC22 increased linearly in the liquid fraction, whereas Paludibacter increased and BF311 increased linearly with increasing doses of PBLC in both fractions. The PBLC treatments also lowered methanogens within the classes Thermoplasmata and Euryarchaeota. Correlation network analysis revealed positive and negative correlations among many microbial taxa. Differential network analysis showed that PBLC supplementation changed the correlation between some microbial taxa and SCFA. The majority of the predicted functional features were different between the solid and the liquid digesta fractions, whereas the PBLC treatments altered few of the predicted functional gene categories. Overall, dietary PBLC treatments had little influence on the ruminal fermentation and microbiota but affected the associations among some microbial taxa and SCFA

    Effects of dietary menthol-rich bioactive lipid compounds on zootechnical traits, blood variables and gastrointestinal function in growing sheep

    Get PDF
    Background The present study aimed at investigating the influence of 90% menthol-containing plant bioactive lipid compounds (PBLC, essential oils) on growth performance, blood haematological and biochemical profile, and nutrient absorption in sheep. Twenty-four growing Suffolk sheep were allotted into three dietary treatments: Control (without PBLC), lower dose of PBLC (PBLC-L; 80 mg/d) and higher dose of PBLC (PBLC-H; 160 mg/d). Sheep in all groups were fed meadow hay ad libitum plus 600 g/d of concentrate pellets for 28 d. Results Average daily gain was not affected by treatment. Feeding of PBLC increased hay and total feed intake per kg body weight (P < 0.05). Counts of total leucocytes, lymphocytes and monocytes were not different among treatments. However, neutrophil count decreased (P < 0.05) in PBLC-H with a similar trend in PBLC-L (P < 0.10). Concentrations of glucose, bilirubin, triglycerides, cholesterol, urea and magnesium in serum were not different among sheep fed different doses of PBLC. However, serum calcium concentration tended to increase in PBLC-H (P < 0.10) and serum concentrations of aspartate & asparagine (P < 0.01) and glutamate & glutamine (P < 0.05) increased linearly with increasing PBLC dose. In ruminal epithelia isolated from the rumen after killing, baseline conductance (Gt; P < 0.05) and short-circuit current (Isc; P < 0.01) increased in both PBLC groups. Ruminal uptakes of glucose and methionine in the presence of Na+ were not affected by the dietary PBLC supplementation. In the absence of Na+, however, glucose and methionine uptakes increased (P < 0.05) in PBLC-H. In the jejunum, Isc tended to increase in PBLC-H (P < 0.10), but baseline Gt was not affected. Intestinal uptakes of glucose and methionine were not influenced by PBLC in the presence or absence of Na+. Conclusion The results suggest that menthol-rich PBLC increase feed intake, and passive ion and nutrient transport, the latter specifically in the rumen. They also increased serum concentrations of urea precursor amino acids and tended to increase serum calcium concentrations. Future studies will have to show whether some of these findings might be commonly linked to a stimulation of transient receptor potential (TRP) channels in the gastrointestinal tract

    Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro- inflammatory cytokine-mediated signalling

    Get PDF
    The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low- protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-α, interferon γ (IFN-γ) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-α and IL-8 was higher with high-protein diets (P< 0·05). MCT1 expression was positively correlated with l-lactate, whereas negatively correlated with NH3 and putrescine (P< 0·05). The expression of IL-8 and TNF-α was negatively correlated with l-lactate and positively correlated with NH3 and putrescine, whereas the expression of IFN-γ was positively correlated with histamine and 4-ethylphenol (P< 0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH4Cl or TNF-α as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P< 0·05) and lower after incubation with NH4Cl or TNF-α (P< 0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P< 0·05) and down-regulation by TNF-α and NH4Cl (linear, P< 0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH3- and TNF-α-mediated signalling

    Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs

    Get PDF
    Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status

    POS511 Cruise Report, The Christiana-Santorini Volcanic Complex, 01.04.2017 (Heraklion) - 22.04.2017 (Heraklion)

    Get PDF
    R.V. POSEIDON Cruise No.: 511 Dates, Ports: 01.04.2017 (Heraklion) - 22.04.2017 (Heraklion) Research Subject: The Christiana-Santorini Volcanic Comple

    POS511 Cruise Report, The Christiana-Santorini Volcanic Complex, 01.04.2017 (Heraklion) - 22.04.2017 (Heraklion)

    Get PDF
    R.V. POSEIDON Cruise No.: 511 Dates, Ports: 01.04.2017 (Heraklion) - 22.04.2017 (Heraklion) Research Subject: The Christiana-Santorini Volcanic Comple
    corecore