10 research outputs found

    Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks

    Get PDF
    Agriculture is by far the biggest water consumer on our planet, accounting for 70 per cent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently ('more crop per drop'). Water-use efficiency (WUE) and drought tolerance of crops are complex traits that are determined by many physiological processes whose interplay is not well understood. Here, we describe a combinatorial engineering approach to optimize signalling networks involved in the control of stress tolerance. Screening a large population of combinatorially transformed plant lines, we identified a combination of calcium-dependent protein kinase genes that confers enhanced drought stress tolerance and improved growth under water-limiting conditions. Targeted introduction of this gene combination into plants increased plant survival under drought and enhanced growth under water-limited conditions. Our work provides an efficient strategy for engineering complex signalling networks to improve plant performance under adverse environmental conditions, which does not depend on prior understanding of network function

    Benthos

    Get PDF
    Currently, > 4,000 Arctic macro- and megabenthic species are known, representing the majority of Arctic marine faunal diversity. This estimate is expected to increase. • Benthic invertebrates are food to shes, marine mammals, seabirds and humans, and are commercially harvested. • Traditional Knowledge (TK) emphasizes the link between the benthic species and their predators, such as walrus, and their signi cance to culture. • Decadal changes in benthos biodiversity are observed in some well-studied regions, such as the Barents Sea and Chukchi Sea. • Drivers related to climate-change such as warming, ice decline and acidification are affecting the benthic community on a pan-Arctic scale, while drivers such as trawling, river/glacier discharge and invasive species have signficant impact on regional or local scales. • Increasing numbers of species are moving into, or shifting, their distributions in Arctic waters. These species will outcompete, prey on or offer less nutritious value as prey for Arctic species. • Current monitoring efforts have focused on macro- and megabenthic species, but have been confined to the Chukchi Sea and the Barents Sea. Efforts are increasing in waters of Greenland, Iceland, the Canadian Arctic, and in the Norwegian Sea. All other Arctic Marine Areas are lacking long-term benthic monitoring. • As a first step towards an international collaborative monitoring framework, we recommend to develop a time- and cost-effective, long-term and standardized monitoring of megabenthic communities in all Arctic regions with regular annual groundfish assessment surveys. Expanding monitoring on micro-, meio- and macrobenthic groups is encouraged

    Characteristics of the Mesophotic Megabenthic Assemblages of the Vercelli Seamount (North Tyrrhenian Sea)

    Get PDF
    The biodiversity of the megabenthic assemblages of the mesophotic zone of a Tyrrhenian seamount (Vercelli Seamount) is described using Remotely Operated Vehicle (ROV) video imaging from 100 m depth to the top of the mount around 61 m depth. This pinnacle hosts a rich coralligenous community characterized by three different assemblages: (i) the top shows a dense covering of the kelp Laminaria rodriguezii; (ii) the southern side biocoenosis is mainly dominated by the octocorals Paramuricea clavata and Eunicella cavolinii; while (iii) the northern side of the seamount assemblage is colonized by active filter-feeding organisms such as sponges (sometimes covering 100% of the surface) with numerous colonies of the ascidian Diazona violacea, and the polychaete Sabella pavonina. This study highlights, also for a Mediterranean seamount, the potential role of an isolated rocky peak penetrating the euphotic zone, to work as an aggregating structure, hosting abundant benthic communities dominated by suspension feeders, whose distribution may vary in accordance to the geomorphology of the area and the different local hydrodynamic conditions

    Large-Scale Spatial Distribution Patterns of Echinoderms in Nearshore Rocky Habitats

    No full text
    corecore