657 research outputs found

    Evidence of fatal skeletal injuries on Malapa Hominins 1 and 2

    Get PDF
    Malapa is one of the richest early hominin sites in Africa and the discovery site of the hominin species, Australopithecus sediba. The holotype and paratype (Malapa Hominin 1 and 2, or MH1 and MH2, respectively) skeletons are among the most complete in the early hominin record. Dating to approximately two million years BP, MH1 and MH2 are hypothesized to have fallen into a natural pit trap. All fractures evident on MH1 and MH2 skeletons were evaluated and separated based on wet and dry bone fracture morphology/characteristics. Most observed fractures are post-depositional, but those in the right upper limb of the adult hominin strongly indicate active resistance to an impact, while those in the juvenile hominin mandible are consistent with a blow to the face. The presence of skeletal trauma independently supports the falling hypothesis and supplies the first evidence for the manner of death of an australopith in the fossil record that is not attributed to predation or natural death

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    Disfluency in dialogue:an intentional signal from the speaker?

    Get PDF
    Disfluency is a characteristic feature of spontaneous human speech, commonly seen as a consequence of problems with production. However, the question remains open as to why speakers are disfluent: Is it a mechanical by-product of planning difficulty, or do speakers use disfluency in dialogue to manage listeners' expectations? To address this question, we present two experiments investigating the production of disfluency in monologue and dialogue situations. Dialogue affected the linguistic choices made by participants, who aligned on referring expressions by choosing less frequent names for ambiguous images where those names had previously been mentioned. However, participants were no more disfluent in dialogue than in monologue situations, and the distribution of types of disfluency used remained constant. Our evidence rules out at least a straightforward interpretation of the view that disfluencies are an intentional signal in dialogue. © 2012 Psychonomic Society, Inc

    Alignment to the Actions of a Robot

    Get PDF
    Alignment is a phenomenon observed in human conversation: Dialog partners’ behavior converges in many respects. Such alignment has been proposed to be automatic and the basis for communicating successfully. Recent research on human–computer dialog promotes a mediated communicative design account of alignment according to which the extent of alignment is influenced by interlocutors’ beliefs about each other. Our work aims at adding to these findings in two ways. (a) Our work investigates alignment of manual actions, instead of lexical choice. (b) Participants interact with the iCub humanoid robot, instead of an artificial computer dialog system. Our results confirm that alignment also takes place in the domain of actions. We were not able to replicate the results of the original study in general in this setting, but in accordance with its findings, participants with a high questionnaire score for emotional stability and participants who are familiar with robots align their actions more to a robot they believe to be basic than to one they believe to be advanced. Regarding alignment over the course of an interaction, the extent of alignment seems to remain constant, when participants believe the robot to be advanced, but it increases over time, when participants believe the robot to be a basic version

    Do you think it's a disease? a survey of medical students

    Get PDF
    Background: The management of medical conditions is influenced by whether clinicians regard them as "disease" or "not a disease". The aim of the survey was to determine how medical students classify a range of conditions they might encounter in their professional lives and whether a different name for a condition would influence their decision in the categorisation of the condition as a 'disease' or 'not a disease'. Methods. We surveyed 3 concurrent years of medical students to classify 36 candidate conditions into "disease" and "non-disease". The conditions were given a 'medical' label and a (lay) label and positioned where possible in alternate columns of the survey. Results: The response rate was 96% (183 of 190 students attending a lecture): 80% of students concurred on 16 conditions as "disease" (eg diabetes, tuberculosis), and 4 as "non- disease" (eg baldness, menopause, fractured skull and heat stroke). The remaining 16 conditions (with 21-79% agreement) were more contentious (especially obesity, infertility, hay fever, alcoholism, and restless leg syndrome). Three pairs of conditions had both a more, and a less, medical label: the more medical labels (myalgic encephalomyelitis, hypertension, and erectile dysfunction) were more frequently classified as 'disease' than the less medical (chronic fatigue syndrome, high blood pressure, and impotence), respectively, significantly different for the first two pairs. Conclusions: Some conditions excluded from the classification of "disease" were unexpected (eg fractured skull and heat stroke). Students were mostly concordant on what conditions should be classified as "disease". They were more likely to classify synonyms as 'disease' if the label was medical. The findings indicate there is still a problem 30 years on in the concept of 'what is a disease'. Our findings suggest that we should be addressing such concepts to medical students

    The development of path integration: combining estimations of distance and heading

    Get PDF
    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing

    Why Can't Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study

    Get PDF
    The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity-key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed. © 2013 Horn et al

    The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis

    Get PDF
    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species–particularly in freshwater and marine environments–is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow

    Chronic Losartan Administration Reduces Mortality and Preserves Cardiac but Not Skeletal Muscle Function in Dystrophic Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6–9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease

    Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    Get PDF
    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method
    corecore