69 research outputs found

    HyperCLIPS: A HyperCard interface to CLIPS

    Get PDF
    HyperCLIPS combines the intuitive, interactive user interface of the Apple Macintosh(TM) with the powerful symbolic computation of an expert system interpreter. HyperCard(TM) is an excellent environment for quickly developing the front end of an application with buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference engine for complex problem solving and analysis. By integrating HyperCard and CLIPS the advantages and uses of both packages are made available for a wide range of uses: rapid prototyping of knowledge-based expert systems, interactive simulations of physical systems, and intelligent control of hypertext processes, to name a few. Interfacing HyperCard and CLIPS is natural. HyperCard was designed to be extended through the use of external commands (XCMDs), and CLIPS was designed to be embedded through the use of the I/O router facilities and callable interface routines. With the exception of some technical difficulties which will be discussed later, HyperCLIPS implements this interface in a straight forward manner, using the facilities provided. An XCMD called 'ClipsX' was added to HyperCard to give access to the CLIPS routines: clear, load, reset, and run. And an I/O router was added to CLIPS to handle the communication of data between CLIPS and HyperCard

    CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance

    Get PDF
    Background It has been suggested that polymorphisms within CYP1A2 impact inter-individual variation in the response to caffeine. The purpose of this study was to explore the acute effects of caffeine on resistance exercise, jumping, and sprinting performance in a sample of resistance-trained men, and to examine the influence of genetic variation of CYP1A2 (rs762551) on the individual variation in responses to caffeine ingestion. Methods Twenty-two men were included as participants (AA homozygotes n = 13; C-allele carriers n = 9) and were tested after the ingestion of caffeine (3 mg/kg of body mass) and a placebo. Exercise performance was assessed with the following outcomes: (a) movement velocity and power output in the bench press exercise with loads of 25, 50, 75, and 90% of one-repetition maximum (1RM); (b) quality and quantity of performed repetitions in the bench press exercise performed to muscular failure with 85% 1RM; (c) vertical jump height in a countermovement jump test; and (d) power output in a Wingate test. Results Compared to placebo, caffeine ingestion enhanced: (a) movement velocity and power output across all loads (effect size [ES]: 0.20–0.61; p <  0.05 for all); (b) the quality and quantity of performed repetitions with 85% of 1RM (ES: 0.27–0.85; p <  0.001 for all); (c) vertical jump height (ES: 0.15; p = 0.017); and (d) power output in the Wingate test (ES: 0.33–0.44; p <  0.05 for all). We did not find a significant genotype × caffeine interaction effect (p-values ranged from 0.094 to 0.994) in any of the analyzed performance outcomes. Conclusions Resistance-trained men may experience acute improvements in resistance exercise, jumping, and sprinting performance following the ingestion of caffeine. The comparisons of the effects of caffeine on exercise performance between individuals with the AA genotype and AC/CC genotypes found no significant differences. Trial registratio

    ADORA2A C Allele Carriers Exhibit Ergogenic Responses to Caffeine Supplementation

    Get PDF
    Caffeine’s ergogenic effects on exercise performance are generally explained by its ability to bind to adenosine receptors. ADORA2A is the gene that encodes A2A subtypes of adenosine receptors. It has been suggested that ADORA2A gene polymorphisms may be responsible for the inter-individual variations in the effects of caffeine on exercise performance. In the only study that explored the influence of variation in ADORA2A—in this case, a common polymorphism (rs5751876)—on the ergogenic effects of caffeine on exercise performance, C allele carriers were identified as “non-responders” to caffeine. To explore if C allele carriers are true “non-responders” to the ergogenic effects of caffeine, in this randomized, double-blind study, we examined the acute effects of caffeine ingestion among a sample consisting exclusively of ADORA2A C allele carriers. Twenty resistance-trained men identified as ADORA2A C allele carriers (CC/CT genotype) were tested on two occasions, following the ingestion of caffeine (3 mg/kg) and a placebo. Exercise performance was evaluated with movement velocity, power output, and muscle endurance during the bench press exercise, countermovement jump height, and power output during a Wingate test. Out of the 25 analyzed variables, caffeine was ergogenic in 21 (effect size range: 0.14 to 0.96). In conclusion, ADORA2A (rs5751876) C allele carriers exhibited ergogenic responses to caffeine ingestion, with the magnitude of improvements similar to what was previously reported in the literature among samples that were not genotype-specific. Therefore, individuals with the CT/CC genotype may still consider supplementing with caffeine for acute improvements in performance

    The Effects of Caffeine Ingestion on Measures of Rowing Performance: A Systematic Review and Meta-Analysis

    Get PDF
    The purpose of this paper was to conduct a systematic review and a meta-analysis of studies examining the acute effects of caffeine ingestion on measures of rowing performance. Crossover and placebo-controlled experiments that investigated the effects of caffeine ingestion on measures of rowing performance were included. The PEDro checklist was used to assess the methodological quality of the included studies. Seven studies of good and excellent methodological quality were included. None of the included studies examined on-water rowing. The majority of studies that were included in the meta-analysis used a 2000m rowing distance with only one using 1000m distance. Results of the main meta-analysis indicated that caffeine enhances performance on a rowing ergometer compared to placebo with a mean difference of −4.1 s (95% confidence interval (CI): −6.4, −1.8 s). These values remained consistent in the analysis in which the study that used a 1000m distance was excluded (mean difference: −4.3 s; 95% CI: −6.9, −1.8 s). We also found a significant increase in mean power (mean difference: 5.7 W; 95% CI: 2.1, 9.3 W) and minute ventilation (mean difference: 3.4 L/min; 95% CI: 1.7, 5.1 L/min) following caffeine ingestion. No significant differences between caffeine and placebo were found for the rating of perceived exertion, oxygen consumption, respiratory exchange ratio, and heart rate. This meta-analysis found that acute caffeine ingestion improves 2000m rowing ergometer performance by ~4 s. Our results support the use of caffeine pre-exercise as an ergogenic aid for rowing performance

    CYP1A2 genotype and acute ergogenic effects of caffeine intake on exercise performance: a systematic review

    Get PDF
    To systematically review studies that examined the influence of the CYP1A2 -163C>A polymorphism on the ergogenic effects of caffeine and to discuss some of the reasons for the discrepancies in findings between the studies. This review was performed in accordance with the PRISMA guidelines. The search for studies was performed through nine databases. Seventeen studies were included in the review. Based on the included studies, it seems that individuals with the AA or AC/CC genotype may experience an increase in performance following caffeine ingestion. Significant differences between genotypes were found in four studies, and all four reported a more favorable response in the AA vs. AC/CC genotype. These results suggest that if there is an actual genotype-related effect of acute caffeine supplementation, it might be in that direction. In the studies that reported such data for aerobic endurance, the findings are specific to male participants performing cycling time trials (distances of ≥ 10 km) and ingesting caffeine 60 min before exercise. For high-intensity exercise, two studies reported that genotype variations determined the response to caffeine ingestion, even though the differences were either small (~ 1 additional repetition in high-load resistance exercise set performed to muscular failure) or inconsistent (i.e., observed only in one out of eight performance tests). CYP1A2 genotype variations may modulate caffeine's ergogenic effects, but the differences between genotypes were small, inconsistent, or limited to specific exercise scenarios. Future studies with larger sample sizes are needed to fully elucidate this research area

    Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses

    Get PDF
    To systematically review, summarise and appraise findings of published meta-analyses that examined the effects of caffeine on exercise performance. Umbrella review. Twelve databases. Meta-analyses that examined the effects of caffeine ingestion on exercise performance. Eleven reviews (with a total of 21 meta-analyses) were included, all being of moderate or high methodological quality (assessed using the Assessing the Methodological Quality of Systematic Reviews 2 checklist). In the meta-analyses, caffeine was ergogenic for aerobic endurance, muscle strength, muscle endurance, power, jumping performance and exercise speed. However, not all analyses provided a definite direction for the effect of caffeine when considering the 95% prediction interval. Using the Grading of Recommendations Assessment, Development and Evaluation criteria the quality of evidence was generally categorised as moderate (with some low to very low quality of evidence). Most individual studies included in the published meta-analyses were conducted among young men. Synthesis of the currently available meta-analyses suggest that caffeine ingestion improves exercise performance in a broad range of exercise tasks. Ergogenic effects of caffeine on muscle endurance, muscle strength, anaerobic power and aerobic endurance were substantiated by moderate quality of evidence coming from moderate-to-high quality systematic reviews. For other outcomes, we found moderate quality reviews that presented evidence of very low or low quality. It seems that the magnitude of the effect of caffeine is generally greater for aerobic as compared with anaerobic exercise. More primary studies should be conducted among women, middle-aged and older adults to improve the generalisability of these findings. [Abstract copyright: © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.

    Strengthening a One Health approach to emerging zoonoses

    Get PDF
    Given the enormous global impact of the COVID-19 pandemic, outbreaks of highly pathogenic avian influenza in Canada, and manifold other zoonotic pathogen activity, there is a pressing need for a deeper understanding of the human-animal-environment interface and the intersecting biological, ecological, and societal factors contributing to the emergence, spread, and impact of zoonotic diseases. We aim to apply a One Health approach to pressing issues related to emerging zoonoses, and propose a functional framework of interconnected but distinct groups of recommendations around strategy and governance, technical leadership (operations), equity, education and research for a One Health approach and Action Plan for Canada. Change is desperately needed, beginning by reorienting our approach to health and recalibrating our perspectives to restore balance with the natural world in a rapid and sustainable fashion. In Canada, a major paradigm shift in how we think about health is required. All of society must recognize the intrinsic value of all living species and the importance of the health of humans, other animals, and ecosystems to health for all

    Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies

    Get PDF
    Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.Peer reviewe
    corecore