239 research outputs found

    Identifying an avid eating profile in childhood: Associations with temperament, feeding practices and food insecurity

    Get PDF
    This study aimed to identify distinct eating behaviour profiles in young children and examine how other key predictors of children's eating behaviour, including child temperament, the experience of food insecurity, or parental feeding practices, may vary by identified profiles. An online survey was conducted with 995 parents/carers living in England and Wales (N = 995, Mage = 35.4 years, 80% female, 88% White). Participants reported on their child's eating behaviour using the Child Eating Behaviour Questionnaire and completed measures of child temperament, household food security and parental feeding practices. Latent Profile Analysis (LPA) was carried out to identify distinct eating profiles amongst the children (36–72 months, Mage = 48.8 months, 52% female). Four eating profiles emerged from the sample of children: (a) avid eating, (b) avoidant eating, (c) happy eating, and (d) typical eating. Avid eating (21.9% of children) was characterised by higher levels of food responsiveness, enjoyment of food, and emotional over-eating in combination with lower satiety responsiveness, slowness in eating and food fussiness. Children with an avid eating profile were reported to be more surgent and experienced greater food insecurity than all other eating profiles. Parents of children belonging to the avid eating profile showed significantly greater use of food for emotional regulation, varied and balanced food provision, restriction of food for health, and restriction of food for weight feeding practices than the three other eating profiles

    Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia

    Get PDF
    Purpose Congenital diaphragmatic hernia (CDH) is characterized by a developmental defect in the diaphragm, pulmonary hypoplasia and pulmonary hypertension. NPAS3 is a PAS domain transcription factor regulating Drosophila tracheogenesis. NPAS3 null mice develop pulmonary hypoplasia in utero and die after birth due to respiratory failure. We aimed to evaluate NPAS3 expres- sion during normal and abnormal lung development due to CDH. Methods CDH was induced by administering 100 mg/ml nitrofen to time-pregnant dams on embryonic day (E) 9 of gestation. Lungs were isolated on E15, E18 and E21 and NPAS3 localization was determined by immunohisto- chemistry and quantified using Western blotting. Results We found that only E21 hypoplastic CDH lungs have reduced expression of NPAS3 in the terminal sac- cules. Western blotting confirmed the down-regulation of NPAS3 protein in the nitrofen-induced hypoplastic lungs. Conclusions We demonstrate for the first time that ni- trofen-induced hypoplastic CDH lungs have reduced NPAS3 expression in the terminal saccules during the later stages of abnormal lung development. Our findings suggest that NPAS3 is associated with pulmonary hypoplasia in CDH.Supported by the Children’s Hospital Research Institute of Manitoba; RK is the recipient of a Career Enhancement Award from the Canadian Child Health Clinician Scientist Program and a New Investigator Salary Award from the Canadian Institutes of Health Research, Manitoba Lung Association and the Children’s Hospital Research Institute

    Perspectives for next generation lithium-ion battery cathode materials

    Get PDF
    Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime

    Perspectives for next generation lithium-ion battery cathode materials

    Get PDF
    Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime.</jats:p

    Capabilities and quality of life in Dutch psycho-geriatric nursing homes: an exploratory study using a proxy version of the ICECAP-O

    Get PDF
    Contains fulltext : 110478.pdf (publisher's version ) (Open Access)PURPOSE: To validate the ICECAP-O capability measure in psycho-geriatric elderly in nursing homes, we compared the capability scores of restrained and unrestrained clients. Both nursing staff and family were used as proxies for assessing clients' capabilities. METHOD: For 122 psycho-geriatric elderly, a total of 96 nursing professionals and 68 family members completed a proxy questionnaire. We investigated the convergent and discriminant validity of the ICECAP-O and measures of care dependency, health-related quality of life, and overall quality of life. We also directly compared ICECAP-O scores of the 56 clients for whom both nursing staff and family members had completed the questionnaire. RESULTS: Convergent validity between ICECAP-O and care dependency, health-related, and overall quality of life measures could be established, as well as discriminant validity for the restrained and unrestrained groups. Nursing and family proxy ICECAP-O tariffs were not significantly correlated. DISCUSSION: ICECAP-O measures a more general concept than health-related quality of life and can differentiate between restrained and non-restrained psycho-geriatric clients. Since nurses seem to be able to assess the current quality of life of clients using the ICECAP-O more precisely than the family proxies, for now the use of nursing proxies is recommended in a nursing home setting

    Action potentials in abscisic acid-deficient tomato mutant generated spontaneously and evoked by electrical stimulation

    Get PDF
    Action potentials generated spontaneously (SAPs) and evoked by electrical stimulation (APs) in tomato plants (Solanum lycopersicum L.) cv. Micro-Tom ABA-deficient mutants (sitiens—MTsit) and its wild type (MTwt) were characterized by continuous monitoring of electrical activity for 66 h and by application of an electrical stimulation supplied extracellularly. MTsit generated SAPs which spread along the stem, including petioles and roots with an amplitude of 44.6 ± 4.4 mV, half-time (t½) of 33.1 ± 2.9 s and velocity of 5.4 ± 1.0 cm min−1. Amplitude and velocity were 43 and 108 % higher in MTsit than in MTwt, respectively. The largest number of SAPs was registered in the early morning in both genotypes. MTsit was less responsive to electrical stimuli. The excitation threshold and the refractory period were greater in MTsit than in MTwt. After current application, APs were generated in the MTwt with 21.2 ± 2.4 mV amplitude and propagated with 5.6 ± 0.5 cm min−1 velocity. Lower intensity stimuli did not trigger APs in these plants. In MTsit APs were measured with amplitude of 26.8 ± 4.8 mV and propagated with velocity of 8.5 ± 0.1 cm min−1

    Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective

    Get PDF
    This article reviews the present state of Quantitative Structure-Property Relationships (QSPR) in glass design and gives an outlook into future developments. First an overview is given of the statistical methodology, with particular emphasis to the integration of QSPR with molecular dynamics simulations to derive informative structural descriptors. Then, the potentiality of this approach as a tool for interpretative and predictive purposes is highlighted by a number of recent inspiring applications

    Unusually complex phase of dense nitrogen at extreme conditions

    Get PDF
    Nitrogen exhibits an exceptional polymorphism under extreme conditions, making it unique amongst the elemental diatomics and a valuable testing system for experiment-theory comparison. Despite attracting considerable attention, the structures of many high-pressure nitrogen phases still require unambiguous determination. Here, we report the structure of the elusive high-pressure high-temperature polymorph ιN2ι–N_2 at 56 GPa and ambient temperature, determined by single crystal X-ray diffraction, and investigate its properties using ab initio simulations. We find that ιN2ι–N_2 is characterised by an extraordinarily large unit cell containing 48 N2N_2 molecules. Geometry optimisation favours the experimentally determined structure and density functional theory calculations find ιN2ι–N_2 to have the lowest enthalpy of the molecular nitrogen polymorphs that exist between 30 and 60 GPa. The results demonstrate that very complex structures, similar to those previously only observed in metallic elements, can become energetically favourable in molecular systems at extreme pressures and temperatures

    Association Analysis of 94 Candidate Genes and Schizophrenia-Related Endophenotypes

    Get PDF
    While it is clear that schizophrenia is highly heritable, the genetic basis of this heritability is complex. Human genetic, brain imaging, and model organism studies have met with only modest gains. A complementary research tactic is to evaluate the genetic substrates of quantitative endophenotypes with demonstrated deficits in schizophrenia patients. We used an Illumina custom 1,536-SNP array to interrogate 94 functionally relevant candidate genes for schizophrenia and evaluate association with both the qualitative diagnosis of schizophrenia and quantitative endophenotypes for schizophrenia. Subjects included 219 schizophrenia patients and normal comparison subjects of European ancestry and 76 schizophrenia patients and normal comparison subjects of African ancestry, all ascertained by the UCSD Schizophrenia Research Program. Six neurophysiological and neurocognitive endophenotype test paradigms were assessed: prepulse inhibition (PPI), P50 suppression, the antisaccade oculomotor task, the Letter-Number Span Test, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test-64 Card Version. These endophenotype test paradigms yielded six primary endophenotypes with prior evidence of heritability and demonstrated schizophrenia-related impairments, as well as eight secondary measures investigated as candidate endophenotypes. Schizophrenia patients showed significant deficits on ten of the endophenotypic measures, replicating prior studies and facilitating genetic analyses of these phenotypes. A total of 38 genes were found to be associated with at least one endophenotypic measure or schizophrenia with an empirical p-value<0.01. Many of these genes have been shown to interact on a molecular level, and eleven genes displayed evidence for pleiotropy, revealing associations with three or more endophenotypic measures. Among these genes were ERBB4 and NRG1, providing further support for a role of these genes in schizophrenia susceptibility. The observation of extensive pleiotropy for some genes and singular associations for others in our data may suggest both converging and independent genetic (and neural) pathways mediating schizophrenia risk and pathogenesis
    corecore