874 research outputs found

    Long-Range Energy-Level Interaction in Small Metallic Particles

    Get PDF
    We consider the energy level statistics of non-interacting electrons which diffuse in a d d -dimensional disordered metallic conductor of characteristic Thouless energy Ec. E_c. We assume that the level distribution can be written as the Gibbs distribution of a classical one-dimensional gas of fictitious particles with a pairwise additive interaction potential f(ε). f(\varepsilon ). We show that the interaction which is consistent with the known correlation function of pairs of energy levels is a logarithmic repulsion for level separations ε<Ec, \varepsilon <E_c, in agreement with Random Matrix Theory. When ε>Ec, \varepsilon >E_c, f(ε) f(\varepsilon ) vanishes as a power law in ε/Ec \varepsilon /E_c with exponents 12,2, -{1 \over 2},-2, and 32 -{3 \over 2} for d=1,2, d=1,2, and 3, respectively. While for d=1,2 d=1,2 the energy-level interaction is always repulsive, in three dimensions there is long-range level attraction after the short-range logarithmic repulsion.Comment: Saclay-s93/014 Email: [email protected] [2017: missing figure included

    Web-assisted tunneling in the kicked harmonic oscillator

    Full text link
    We show that heating of harmonically trapped ions by periodic delta kicks is dramatically enhanced at isolated values of the Lamb-Dicke parameter. At these values, quasienergy eigenstates localized on island structures undergo avoided crossings with extended web-states.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    Length-dependent oscillations of the conductance through atomic chains: The importance of electronic correlations

    Full text link
    We calculate the conductance of atomic chains as a function of their length. Using the Density Matrix Renormalization Group algorithm for a many-body model which takes into account electron-electron interactions and the shape of the contacts between the chain and the leads, we show that length-dependent oscillations of the conductance whose period depends on the electron density in the chain can result from electron-electron scattering alone. The amplitude of these oscillations can increase with the length of the chain, in contrast to the result from approaches which neglect the interactions.Comment: 7 pages, 4 figure

    Ruminal Proteolysis in Forages with Distinct Endopeptidases Activities

    Get PDF
    Improving livestock efficiency in utilisation of nitrogen resources continues to be a major environmental and economic objective. Zhu et al. (1999) have shown that plant endopeptidases are activated as a response to cutting stress. Previous work in our laboratory explored over 300 entries of forage genotypes and found a broad diversity in enzymatic activity by means of hydrolysis in gelatine and direct autolysis assays in forage tissues. The objective of this work was to assess if the species previously identified as having high or low endopeptidase activity, would behave consistently when exposed to ruminal microbial proteolysis

    La Résection arthrodèse de l’articulation fémoro-tibio-rotulienne chez le chien

    Get PDF
    Pichard R. La résection arthrodèse de l’articulation fémoro-tibio-rotulienne chez le chien. In: Bulletin de l'Académie Vétérinaire de France tome 126 n°10, 1973. pp. 409-416

    Parenteral nutrition in the intensive care unit: cautious use improves outcome.

    Get PDF
    Critical illness is characterised by nutritional and metabolic disorders, resulting in increased muscle catabolism, fat-free mass loss, and hyperglycaemia. The objective of the nutritional support is to limit fat-free mass loss, which has negative consequences on clinical outcome and recovery. Early enteral nutrition is recommended by current guidelines as the first choice feeding route in ICU patients. However, enteral nutrition alone is frequently associated with insufficient coverage of the energy requirements, and subsequently energy deficit is correlated to worsened clinical outcome. Controlled trials have demonstrated that, in case of failure or contraindications to full enteral nutrition, parenteral nutrition administration on top of insufficient enteral nutrition within the first four days after admission could improve the clinical outcome, and may attenuate fat-free mass loss. Parenteral nutrition is cautious if all-in-one solutions are used, glycaemia controlled, and overnutrition avoided. Conversely, the systematic use of parenteral nutrition in the ICU patients without clear indication is not recommended during the first 48 hours. Specific methods, such as thigh ultra-sound imaging, 3rd lumbar vertebra-targeted computerised tomography and bioimpedance electrical analysis, may be helpful in the future to monitor fat-free mass during the ICU stay. Clinical studies are warranted to demonstrate whether an optimal nutritional management during the ICU stay promotes muscle mass and function, the recovery after critical illness and reduces the overall costs

    Failure of single-parameter scaling of wave functions in Anderson localization

    Full text link
    We show how to use properties of the vectors which are iterated in the transfer-matrix approach to Anderson localization, in order to generate the statistical distribution of electronic wavefunction amplitudes at arbitary distances from the origin of Ld1×L^{d-1} \times \infty disordered systems. For d=1d=1 our approach is shown to reproduce exact diagonalization results available in the literature. In d=2d=2, where strips of width L64 L \leq 64 sites were used, attempted fits of gaussian (log-normal) forms to the wavefunction amplitude distributions result in effective localization lengths growing with distance, contrary to the prediction from single-parameter scaling theory. We also show that the distributions possess a negative skewness SS, which is invariant under the usual histogram-collapse rescaling, and whose absolute value increases with distance. We find 0.15S0.300.15 \lesssim -S \lesssim 0.30 for the range of parameters used in our study, .Comment: RevTeX 4, 6 pages, 4 eps figures. Phys. Rev. B (final version, to be published

    Universal Quantum Signatures of Chaos in Ballistic Transport

    Get PDF
    The conductance of a ballistic quantum dot (having chaotic classical dynamics and being coupled by ballistic point contacts to two electron reservoirs) is computed on the single assumption that its scattering matrix is a member of Dyson's circular ensemble. General formulas are obtained for the mean and variance of transport properties in the orthogonal (beta=1), unitary (beta=2), and symplectic (beta=4) symmetry class. Applications include universal conductance fluctuations, weak localization, sub-Poissonian shot noise, and normal-metal-superconductor junctions. The complete distribution P(g) of the conductance g is computed for the case that the coupling to the reservoirs occurs via two quantum point contacts with a single transmitted channel. The result P(g)=g^(-1+beta/2) is qualitatively different in the three symmetry classes. ***Submitted to Europhysics Letters.****Comment: 4 pages, REVTeX-3.0, INLO-PUB-94032

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter μU2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EμE_{\mu}. We find that Eμ1/μE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and Eμ1/μE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as U|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE

    Strongly correlated wave functions for artificial atoms and molecules

    Full text link
    A method for constructing semianalytical strongly correlated wave functions for single and molecular quantum dots is presented. It employs a two-step approach of symmetry breaking at the Hartree-Fock level and of subsequent restoration of total spin and angular momentum symmetries via Projection Techniques. Illustrative applications are presented for the case of a two-electron helium-like single quantum dot and a hydrogen-like quantum dot molecule.Comment: 9 pages. Revtex with 2 GIF and 1 EPS figures. Published version with extensive clarifications. A version of the manuscript with high quality figures incorporated in the text is available at http://calcite.physics.gatech.edu/~costas/qdhelproj.html For related papers, see http://www.prism.gatech.edu/~ph274c
    corecore