550 research outputs found

    Heat Conduction and Microconvection in Nanofluids: Comparison between Theoretical Models and Experimental Results

    Get PDF
    A nanofluid is a suspension consisting of a uniform distribution of nanoparticles in a base fluid, generally a liquid. Nanofluid can be used as a working fluid in heat exchangers to dissipate heat in the automotive, solar, aviation, aerospace industries. There are numerous physical phenomena that affect heat conduction in nanofluids: clusters, the formation of adsorbate nanolayers, scattering of phonons at the solid–liquid interface, Brownian motion of the base fluid and thermophoresis in the nanofluids. The predominance of one physical phenomenon over another depends on various parameters, such as temperature, size and volume fraction of the nanoparticles. Therefore, it is very difficult to develop a theoretical model for estimating the effective thermal conductivity of nanofluids that considers all these phenomena and is accurate for each value of the influencing parameters. The aim of this study is to promote a way to find the conditions (temperature, volume fraction) under which certain phenomena prevail over others in order to obtain a quantitative tool for the selection of the theoretical model to be used. For this purpose, two sets (SET-I, SET-II) of experimental data were analyzed; one was obtained from the literature, and the other was obtained through experimental tests. Different theoretical models, each considering some physical phenomena and neglecting others, were used to explain the experimental results. The results of the paper show that clusters, the formation of the adsorbate nanolayer and the scattering of phonons at the solid–liquid interface are the main phenomena to be considered when ϕ = 1 ÷ 3%. Instead, at a temperature of 50 ◦C and in the volume fraction range (0.04–0.22%), microconvection prevails over other phenomen

    Theranostic application of miR-429 in HER2+ breast cancer

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed/amplified in one third of breast cancers (BCs), and is associated with the poorer prognosis and the higher metastatic potential in BC. Emerging evidences highlight the role of microRNAs (miRNAs) in the regulation of several cellular processes, including BC. Methods: Here we identified, by in silico approach, a group of three miRNAs with central biological role (high degree centrality) in HER2+ BC. We validated their dysregulation in HER2+ BC and we analysed their functional role by in vitro approaches on selected cell lines and by in vivo experiments in an animal model. Results: We found that their expression is dysregulated in both HER2+ BC cell lines and human samples. Focusing our study on the only upregulated miRNA, miR-429, we discovered that it acts as an oncogene and its upregulation is required for HER2+ cell proliferation. It controls the metastatic potential of HER2+ BC subtype by regulating migration and invasion of the cell. Conclusions: In HER2+ BC oncogenic miR-429 is able to regulate HIF1\u3b1 pathway by directly targeting VHL mRNA, a molecule important for the degradation of HIF1\u3b1. The overexpression of miR-429, observed in HER2+ BC, causes increased proliferation and migration of the BC cells. More important, silencing miR-429 succeeds in delaying tumor growth, thus miR-429 could be proposed as a therapeutic probe in HER2+ BC tumors

    Raman spectroscopy reveals that biochemical composition of breast microcalcifications correlates with histopathologic features

    Get PDF
    Breast microcalcifications are a common mammographic finding. Microcalcifications are considered suspicious signs of breast cancer and a breast biopsy is required, however, cancer is diagnosed in only a few patients. Reducing unnecessary biopsies and rapid characterization of breast microcalcifications are unmet clinical needs. In this study, 473 microcalcifications detected on breast biopsy specimens from 56 patients were characterized entirely by Raman mapping and confirmed by X-ray scattering. Microcalcifications from malignant samples were generally more homogeneous, more crystalline, and characterized by a less substituted crystal lattice compared with benign samples. There were significant differences in Raman features corresponding to the phosphate and carbonate bands between the benign and malignant groups. In addition to the heterogeneous composition, the presence of whitlockite specifically emerged as marker of benignity in benign microcalcifications. The whole Raman signature of each microcalcification was then used to build a classification model that distinguishes microcalcifications according to their overall biochemical composition. After validation, microcalcifications found in benign and malignant samples were correctly recognized with 93.5% sensitivity and 80.6% specificity. Finally, microcalcifications identified in malignant biopsies, but located outside the lesion, reported malignant features in 65% of in situ and 98% of invasive cancer cases, respectively, suggesting that the local microenvironment influences microcalcification features. This study confirms that the composition and structural features of microcalcifications correlate with breast pathology and indicates new diagnostic potentialities based on microcalcifications assessment. Significance: Raman spectroscopy could be a quick and accurate diagnostic tool to precisely characterize and distinguish benign from malignant breast microcalcifications detected on mammography

    Establishment and Morphological Characterization of Patient-Derived Organoids from Breast Cancer

    Get PDF
    Background: Patient-derived organoids (PDO) technology represents an emerging tool for the study of tumor biology and drug responsiveness, thus being useful to design personalized medicine approaches. Despite several studies and clinical trials are ongoing using PDO from colorectal and pancreatic cancer, only few research papers have been published exploiting PDO from breast cancer. Here, we have developed a new protocol to establish PDO from surgical and biopsy samples. Furthermore, we have set up also the methodologies adopted for culture and morphological evaluations. Results: Surgical and core biopsy specimens collected from 33 patients with diagnosis of breast cancer have been processed using the protocols here described obtaining PDO from cancerous and healthy mammary tissue (when available) in a quick and easy way with good yields. The more critical aspects influencing the yield were the characteristic of the tissue of origin (healthy vs tumor tissue) and the amount of material obtained after enzymatic digestion process. Success rate from healthy samples was about 20,83%, while this percentage was higher in samples from cancer tissue (i.e. 87,5%). Also the morphological characterization of breast cancer PDO by brightfield and transmission electron microscopy has been reported. Conclusions: Despite obtaining some organoids from a surgical or biopsy specimen is not a difficult procedure, the establishment of a stable organoid line able to grow and replicate, suitable for long-term biobank storage, is not so obvious. A novel, simple and quick procedure to obtain PDO from surgical and biopsy samples is here proposed to achieve high success rate

    A three-gene signature marks the time to locoregional recurrence in luminal-like breast cancer

    Get PDF
    Background: Gene expression profiling (GEP)-based prognostic signatures are being rapidly integrated into clinical decision making for systemic management of breast cancer patients. However, GEP remains relatively underdeveloped for locoregional risk assessment. Yet, locoregional recurrence (LRR), especially early after surgery, is associated with poor survival. Patients and methods: GEP was carried out on two independent luminal-like breast cancer cohorts of patients developing early (≤5 years after surgery) or late (>5 years) LRR and used, by a training and testing approach, to build a gene signature able to intercept women at risk of developing early LRR. The GEP data of two in silico datasets and of a third independent cohort were used to explore its prognostic value. Results: Analysis of the first two cohorts led to the identification of three genes, CSTB, CCDC91 and ITGB1, whose expression, derived by principal component analysis, generated a three-gene signature significantly associated with early LRR in both cohorts (P value <0.001 and 0.005, respectively), overcoming the discriminatory capability of age, hormone receptor status and therapy. Remarkably, the integration of the signature with these clinical variables led to an area under the curve of 0.878 [95% confidence interval (CI) 0.810-0.945]. In in silico datasets we found that the three-gene signature retained its association, showing higher values in the early relapsed patients. Moreover, in the third additional cohort, the signature significantly associated with relapse-free survival (hazard ratio 1.56, 95% CI 1.04-2.35). Conclusions: Our three-gene signature represents a new exploitable tool to aid treatment choice in patients with luminal-like breast cancer at risk of developing early recurrence

    Speckle observations of the binary asteroid (22) Kalliope with C2PU/PISCO

    Full text link
    We present new speckle measurements of the position of Linus, the satellite of the asteroid (22) Kalliope, obtained at the 1m C2PU-Epsilon telescope on the Plateau de Calern, France. Observations were made in the visible domain with the speckle camera PISCO. We obtained 122 measurements in February-March 2022 and April 2023, with a mean uncertainty close to 10 milli-arcseconds on the angular separation

    Quartz fiber calorimetry

    Get PDF
    The fundamentals of a new electromagnetic and hadronic sampling calorimetry based on the detection of Cherenkov light generated in quartz optical fibers are presented. Optical fibers transport light only in a selected angular range which results in a non-obvious and absolutely unique characteristic for this new technique: showers of very narrow visible energy. In addition, the technique is characterized by radiation resistance measured in Gigarads and nanosecond signal duration. Combined, these properties make quartz fiber calorimetry a very promising technique for high intensity heavy ion experiments and for the high pseudorapidity regions of high intensity collider experiments. The results of beam tests and simulations are used to illustrate the basic properties and peculiar characteristics of this recent development

    J/psi azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    Get PDF
    The J/ψ\psi azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ\psi mesons at SPS energies. Hence, the measurement of J/ψ\psi elliptic anisotropy, quantified by the Fourier coefficient v2_2 of the J/ψ\psi azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ\psi suppression observed in Pb-Pb collisions. We present the measured J/ψ\psi yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v2_{2} as a function of the collision centrality and of the J/ψ\psi transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or pT_{\rm T} sub-samples. The extracted v2_{2} values are significantly larger than zero for non-central collisions and are seen to increase with pT_{\rm T}.Comment: proceedings of HP08 conference corrected a typo in one equatio

    Low neutrophil-to-lymphocyte ratio and pan-immune-inflammation-value predict nodal pathologic complete response in 1274 breast cancer patients treated with neoadjuvant chemotherapy: a multicenter analysis

    Get PDF
    Background: Systemic inflammatory markers draw great interest as potential blood-based prognostic factors in several oncological settings. Objectives: The aim of this study is to evaluate whether neutrophil-to-lymphocyte ratio (NLR) and pan-immune-inflammation value (PIV) predict nodal pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in node-positive (cN+) breast cancer (BC) patients. Design: Clinically, cN+ BC patients undergoing NAC followed by breast and axillary surgery were enrolled in a multicentric study from 11 Breast Units. Methods: Pretreatment blood counts were collected for the analysis and used to calculate NLR and PIV. Logistic regression analyses were performed to evaluate independent predictors of nodal pCR. Results: A total of 1274 cN+ BC patients were included. Nodal pCR was achieved in 586 (46%) patients. At multivariate analysis, low NLR [odds ratio (OR) = 0.71; 95% CI, 0.51–0.98; p = 0.04] and low PIV (OR = 0.63; 95% CI, 0.44–0.90; p = 0.01) were independently predictive of increased likelihood of nodal pCR. A sub-analysis on cN1 patients (n = 1075) confirmed the statistical significance of these variables. PIV was significantly associated with axillary pCR in estrogen receptor (ER)−/human epidermal growth factor receptor 2 (HER2)+ (OR = 0.31; 95% CI, 0.12–0.83; p = 0.02) and ER−/HER2− (OR = 0.41; 95% CI, 0.17–0.97; p = 0.04) BC patients. Conclusion: This study found that low NLR and PIV levels predict axillary pCR in patients with BC undergoing NAC. Registration: Eudract number NCT05798806
    • …
    corecore