321 research outputs found

    Development of the Italian Version of the National Institutes of Health Stroke Scale It-NIHSS

    Get PDF
    Background and Purpose-The National Institutes of Health Stroke Scale (NIHSS) is a basic component of the assessment of patients with acute stroke. To foster and standardize the use of the NIHSS among Italian health professionals, we translated the scale, dubbed into Italian the training and test videotapes devised by the National Institutes of Health researchers, and conducted a series of certification courses using the translated videos. Methods-Translation, text adaptation, video dubbing, and editing of the Italian NIHSS videotapes relied on a team of bilingual stroke neurologists. Three waves of training courses were organized for mixed classes of medical and nonmedical health professionals. The certification test was based on the usual set of 5 videotaped patients. Scoring rules were those provided by the National Institutes of Neurological Disorders and Stroke. Reliability of the Italian NIHSS was assessed using kappa statistics and compared with that of the original NIHSS. Results-During 3 years, 850 nurses, 460 nonneurologist physicians, and 246 neurologists were trained. Pass rates were respectively 44%, 75%, and 87%, respectively. Overall, 80% of scale items showed moderate to excellent reliability. Independent significant predictors of test failure at multivariate logistic regression were nurse profession (OR, 5.41; 95% CI, 4.07 to 7.20), older age (OR, 1.03; 95% CI, 1.02 to 1.05), and first edition of the course (OR, 3.13; 95% CI, 2.43 to 4.05). The agreement across all items between NIHSS and the Italian NIHSS was 80% (kappa = 0.70 +/- 0.18, z < 0.001). Conclusions-The Italian translation, supervised by experienced vascular neurologists, did not influence the clinimetric characteristics of the NIHSS. Our findings support the implementation of NIHSS video training in languages other than English. (Stroke. 2009; 40: 2557-2559.

    BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behaviour

    Get PDF
    The physiology of brain-derived neurotrophic factor signaling in enkephalinergic striatopallidal neurons is poorly understood. Changes in cortical Bdnf expression levels, and/or impairment in brain-derived neurotrophic factor anterograde transport induced by mutant huntingtin (mHdh) are believed to cause striatopallidal neuron vulnerability in early-stage Huntington’s disease. Although several studies have confirmed a link between altered cortical brain-derived neurotrophic factor signaling and striatal vulnerability, it is not known whether the effects are mediated via the brain-derived neurotrophic factor receptor TrkB, and whether they are direct or indirect. Using a novel genetic mouse model, here, we show that selective removal of brain-derived neurotrophic factor–TrkB signaling from enkephalinergic striatal targets unexpectedly leads to spontaneous and drug-induced hyperlocomotion. This is associated with dopamine D2 receptor-dependent increased striatal protein kinase C and MAP kinase activation, resulting in altered intrinsic activation of striatal enkephalinergic neurons. Therefore, brain-derived neurotrophic factor/TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior by modulating neuronal activity in response to excitatory input through the protein kinase C/MAP kinase pathway

    Performance of a commercial polymerase chain reaction test for endocervical Chlamydia trachomatis infection in a university hospital population.

    Get PDF
    OBJECTIVES: To examine the accuracy of a commercial polymerase chain reaction (PCR) test (Amplicor CTR, Roche Diagnostic Systems, Branchburg NJ) for identification of endocervical chlamydial infections through both laboratory evaluation and among a diverse teaching hospital patient population. METHODS: Testing of reliable threshold inocula and reproducibility were carried out using laboratory stock organisms. Paired endocervical samples from patients with a wide range of indications were tested by PCR and an established culture procedure, and discrepant pairs were further analyzed to determine true results. RESULTS: Laboratory evaluation suggested that one copy of target DNA from a viable organism consistently yielded a positive result, and test reproducibility was very good, with an overall coefficient of variation of 15%. Compared to true results in 1,588 paired clinical samples from 1,489 women with a 10% prevalence of infection, the PCR test and culture yielded respective sensitivities of 87.4% and 78.0%, and negative predictive values of 98.6% and 97.6%. Specificity and positive predictive value for both tests were 100%. Cost per specimen was nearly identical at 18.84and18.84 and 18.88 respectively. Polymerase inhibitors and organisms lacking target DNA were not found in false-negative PCR samples. CONCLUSION: This commercial PCR test is accurate, cost-competitive, and much faster than culture for diagnosis of endocervical chlamydia infections in our population of intermediate prevalence of chlamydial infection

    Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias

    Get PDF
    N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered

    Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration

    Get PDF
    Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of \u3b1-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, \u3b1-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that \u3b1-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of \u3b1-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting \u3b1-synuclein prevents the \u3b1-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease

    Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure

    Get PDF
    L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it

    Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease

    Get PDF
    Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms

    Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Get PDF
    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00751595
    corecore