33 research outputs found

    TRAIL receptor signaling and therapeutic option in bone tumors: the trap of the bone microenvironment

    Get PDF
    Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) has been reported to specifically induce malignant cell death being relatively nontoxic to normal cells. Since its identification 15 years ago, the antitumor activity and therapeutic value of TRAIL have been extensively studied. Five receptors quickly emerged, two of them being able to induce programmed cell death in tumor cells. This review takes a comprehensive look at this ligand and its receptors, and its potential role in primary bone tumors (osteosarcoma and Ewing's sarcoma) therapy. The main limit of clinical use of TRAIL being the innate or acquired resistance mechanisms, different possibilities to sensitize resistant cells are discussed in this review, together with the impact of bone microenvironment in the regulation of TRAIL activity

    Drugs targeting the bone microenvironment: new therapeutic tools in Ewing's sarcoma?

    Get PDF
    Introduction: Ewing's sarcoma (ES) is the second most frequent malignant primary bone tumour in children, adolescents and young adults. The overall survival is 60 – 70% at 5 years but still very poor for patients with metastases, disease relapse or for those not responding to chemotherapy. For these high risk patients, new therapeutic approaches are needed beyond conventional therapies (chemotherapy, surgery and radiation) such as targeted therapies. Areas covered: Transcriptomic and genomic analyses in ES have revealed alterations in genes that control signalling pathways involved in many other cancer types. To set up more specific approaches, it is reasonable to think that the particular microenvironment of these bone tumours is essential for their initiation and progression, including in ES. To support this hypothesis, preclinical studies using drugs targeting bone cells (bisphosphonate zoledronate, anti-receptor activator of NF-κB ligand strategies) showed promising results in animal models. This review will discuss the new targeted therapeutic options in ES, focusing more particularly on the ones modulating the bone microenvironment. Expert opinion: Targeting the microenvironment represents a new option for patients with ES. The proof-of-concept has been demonstrated in preclinical studies using relevant animal models, especially for zoledronate, which induced a strong inhibition of tumour progression in an orthotopic bone model

    N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death.

    Get PDF
    APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition

    Targeted therapies for bone sarcomas

    No full text
    Bone sarcomas include a very large number of tumour subtypes, which originate form bone and more particularly from mesenchymal stem cell lineage. Osteosarcoma, Ewing's sarcoma and chondrosarcoma, the three main bone sarcoma entities develop in a favourable microenvironment composed by bone cells, blood vessels, immune cells, based on the 'seed and soil theory'. Current therapy associates surgery and chemotherapy, however, bone sarcomas remain diseases with high morbidity and mortality especially in children and adolescents. In the past decade, various new therapeutic approaches emerged and target the tumour niche or/and directly the tumour cells by acting on signalling/metabolic pathways involved in cell proliferation, apoptosis or drug resistance. The present review gives a brief overview from basic to clinical assessment of the main targeted therapies of bone sarcoma cells

    TRAIL-based therapy in pediatric bone tumors: how to overcome resistance

    No full text
    Osteosarcoma and Ewing’s sarcoma, the two most frequent malignant primary tumors preferentially arise in children and young adults, and have a poor prognosis. TRAIL represents a promising therapeutic approach for most cancers but in the case of primary bone tumors, osteosarcoma cell lines are highly resistant to this pro-apoptotic cytokine. In addition, another signaling pathway mediating cell proliferation and migration may be even activated in this subset of resistant cells leading to protumoral effect. Therapeutic perspectives are linked to possibility to overcome TRAIL resistance by combining other drugs with TRAIL or death receptors agonistic antibodies. We hypothesized that the bone microenvironment may provide a favorable niche for TRAIL resistance that might be targeted by new resensitizing agents

    Therapeutic efficacy of soluble receptor activator of nuclear factor-kappa B-Fc delivered by nonviral gene transfer in a mouse model of osteolytic osteosarcoma

    No full text
    International audienceOsteosarcoma is the most frequent primary bone tumor that develops mainly during youth, the median age of diagnosis being 18 years. Despite improvement in osteosarcoma treatment, survival rate is only 30% after 5 years for patients with pulmonary metastases at diagnosis. This warrants exploration of new therapeutic options. The anti-bone resorption molecule receptor activator of NF-kappaB (RANK) is very promising, as it may block the vicious cycle between bone resorption and tumor proliferation that takes place during tumor development in bone site. The cDNA encoding murine RANK-Fc (mRANK-Fc) was administered by gene transfer using an amphiphilic polymer in a mouse model of osteolytic osteosarcoma. Clinical and bone microarchitecture variables were assessed by radiography and micro-CT analyses. In vitro experiments were designed to determine the mechanism of action of RANK-Fc on tumor cell proliferation (XTT assays), apoptosis (caspase activation), cell cycle distribution (fluorescence-activated cell sorting analysis), or gene expression (reverse transcription-PCR). RANK-Fc was effective in preventing the formation of osteolytic lesions associated with osteosarcoma development and in reducing the tumor incidence, the local tumor growth, and the lung metastases dissemination leading to a 3.9-fold augmentation of mice survival 28 days after implantation. On the contrary, mRANK-Fc did not prevent the development of nonosseous tumor nodules, suggesting that bone environment is necessary for mRANK-Fc therapeutic efficacy. Furthermore, mRANK-Fc has no direct activity on osteosarcoma cells in vitro. mRANK-Fc exerts an indirect inhibitory effect on osteosarcoma progression through inhibition of bone resorption. [Mol Cancer Ther 2008;7(10):3389-98]

    Preclinical Evidence that Use of TRAIL in Ewing's Sarcoma and Osteosarcoma Therapy Inhibits Tumor Growth, Prevents Osteolysis, and Increases Animal Survival

    No full text
    International audiencePURPOSE:Osteosarcoma and Ewing's sarcoma are high-grade neoplasms typically arising in the bones of children and adolescents. Despite improvement in therapy, the five-year survival rate is only 20% for patients not responding to treatment or presenting with metastases. Among new therapeutic strategies, the efficacy of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily with strong antitumoral activity and minimal toxicity to most normal cells and tissues, was investigated by complementary approaches both in vitro and in preclinical models.EXPERIMENTAL DESIGN:The sensitivity of osteosarcoma and Ewing's sarcoma cell lines to TRAIL was investigated in vitro by determining TRAIL receptor expression together with TRAIL effects on cell viability and apoptosis. Complementary preclinical studies were carried out in respective tumor models by inoculation of osteosarcoma or Ewing's sarcoma tumor cells in paraosseous location. In addition, a model of lung nodule dissemination was developed by i.v. injection of osteosarcoma cells.RESULTS:In vitro, both osteosarcoma and Ewing's sarcoma cells that express the TRAIL death receptors were highly sensitive to TRAIL-induced caspase-8-mediated apoptosis. TRAIL administered in vivo by nonviral gene therapy inhibited primary bone tumor incidence and growth by 87% and prevented tumor-induced osteolysis, leading to a significant 2-fold increase in animal survival 40 days after tumor induction. Furthermore, TRAIL inhibited tumor nodule dissemination in lungs and increased survival in an osteosarcoma model.CONCLUSION:These findings suggest that TRAIL is a promising candidate for the development of new therapeutic strategies in the most frequent malignant primary bone tumors
    corecore