229 research outputs found

    K-essential Phantom Energy: Doomsday around the Corner? Revisited

    Full text link
    We generalize some of those results reported by Gonz\'{a}lez-D\'{i}az by further tuning the parameter (β\beta) which is closely related to the canonical kinetic term in kk-essence formalism. The scale factor a(t)a(t) could be negative and decreasing within a specific range of β\beta (1/ω\equiv -1/\omega, ω\omega : the equation-of-state parameter) during the initial evolutional period.Comment: 1 Figure, 6 page

    Auger-induced charge migration

    Get PDF
    Novel perspectives of controlling molecular systems have recently arisen from the possibility of generating attosecond pulses in the ultraviolet regime and tailoring electron dynamics in its natural time scale. The cornerstone mechanism is the so-called charge migration, he production of a coherent charge transfer with subfemtosecond oscillations across a molecule. Typically, charge migration is induced by the ionization of valence molecular orbitals. However, recent technological developments allow the generation of attosecond pulses in the x-ray regime. In this case, the absorption of photons creates core-hole states. In light elements, core-hole states mainly decay by Auger processes that, driven by electron correlations, involve valence orbitals. We theoretically demonstrate in a fluoroacetylene molecule a double-hole charge migration triggered by attosecond core-electron photoionization, followed by Auger electron relaxations. This opens a new route for inducing with x rays charge transfer processes in the subfemtosecond time scaleThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant Agreement No. 702565, from Comunidad de Madrid through the TALENTO program with Reference No. 2017-T1/IND-5432, and from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge support from Junta de Castilla y León (Project No. SA046U16) and MINECO (Grant No. FIS2016- 75652-P). C.H.-G. acknowledges support from a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundatio

    Regularity of maximal functions on Hardy–Sobolev spaces

    Get PDF
    We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy–Sobolev spaces H1,p(Rd) when p > d/(d + 1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy–Sobolev spaces h1,p(Rd) in the same range of exponents

    Campo tensional en el entorno de una fisura. Determinación de KI y KII usando técnicas fotoelásticas

    Get PDF
    Trabajo reproducido y difundido en el repositorio idUS con permiso de la Asociación Española de Ingeniería Mecánica (AEIM)Tras introducir la forma general del campo de tensiones en un borde de grieta se hace una exposición detallada de los métodos para medir K I y K II, resaltando sus ventajas e inconvenientes. Por su generalldad, se ha implementado un método que desarrolla en serie las funciones de tensión. La introducción de las medidas fotoelásticas (que pueden ser de campo lejano) conduce a un sistema sobredetermlnado no lineal de ecuaclones, que es resuelto por un métooo de Neewton-Raphson y mínimos cuadrados. Sobre una aplicación experimental se comentan las caracterlstlcas de este métodoFirst of all, the general form of the crack-tip stress field is introduced. Then, a detailed review of K I-K II methods is pressented, showing thelr features. A stress-functions series expansion method has been implemented, due to its generality. Experimental far-fleld isochromatic polnts are used to fit the series expanslon coefflclents and the overdeterminlstlc non-linear equation system is solved with a Newton-Rapshon least-squares method. Finally the features of thls method are dlscussed uslng an experimental applicatio

    A new view of k-essence

    Get PDF
    K-essence models, relying on scalar fields with non-canonical kinetic terms, have been proposed as an alternative to quintessence in explaining the observed acceleration of the Universe. We consider the use of field redefinitions to cast k-essence in a more familiar form. While k-essence models cannot in general be rewritten in the form of quintessence models, we show that in certain dynamical regimes an equivalence can be made, which in particular can shed light on the tracking behaviour of k-essence. In several cases, k-essence cannot be observationally distinguished from quintessence using the homogeneous evolution, though there may be small effects on the perturbation spectrum. We make a detailed analysis of two k-essence models from the literature and comment on the nature of the fine tuning arising in the models.Comment: 7 pages RevTeX4 file with four figures incorporate

    Use of Heat Transfer Enhancement Techniques in the Design of Heat Exchangers

    Get PDF
    Heat transfer enhancement refers to application of basic concepts of heat transfer processes to improve the rate of heat removal or deposition on a surface. In the flow of a clean fluid through the tube of a heat exchanger, the boundary layer theorem establishes that a laminar sublayer exists where the fluid velocity is minimal. Heat transfer through this stagnant layer is mainly dominated by thermal conduction, becoming the major resistance to heat transfer. From an engineering point of view, heat transfer can be enhanced if this stagnant layer is partially removed or eliminated. In single-phase heat transfer processes, three options are available to increase the heat transfer rate. One of them is the choice of smaller free flow sectional area for increased fluid velocity bringing about a reduction of the thickness of the laminar sublayer. A second option is the engineering of new surfaces which cause increased local turbulence, and the third option consists in the use of mechanical inserts that promote local turbulence. The application of these alternatives is limited by the pressure drop. This chapter describes the concept of heat transfer enhancement and the ways it is applied to the development of new heat exchanger technology

    Dark matter to dark energy transition in k-essence cosmologies

    Get PDF
    We implement the transition from dark matter to dark energy in k-essence cosmologies for a very large set of kinetic functions FF, in a way alternative to recent proposals which use generalized Chaplygin gas and transient models. Here we require that the pressure admits a power-law expansion around some value of the kinetic energy where the pressure vanishes. In addition, for suitable values of the parameters of the model, the speed of sound of the dark matter will be low. We first present the discussion in fairly general terms, and later consider for illustration two examples.Comment: 5 pages, revte
    corecore