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We implement the transition from dark matter to dark energy in k-essence cosmologies
for a very large set of kinetic functions F , in a way alternative to recent proposals17

which use generalized Chaplygin gas and transient models. Here we require that the
pressure admits a power-law expansion around some value of the kinetic energy where19

the pressure vanishes. In addition, for suitable values of the parameters of the model,
the speed of sound of the dark matter will be low. We first present the discussion in21

fairly general terms, and later consider for illustration two examples.
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1. Introduction25

As more and better astrophysical evidence is known, the evolution of the Universe is

largely driven by dark energy with negative pressure together with pressureless cold27

dark matter (see Ref. 1 for the latest review). However, little is known about the

origin of either component, which in the standard cosmological model would play29

very different roles: dark matter would be responsible for matter clustering, whereas

dark energy would account for accelerated expansion. This lack of information leaves31

room to speculate with the idea that a single component acted in fact as both dark

matter and dark energy.33

On one hand the unification of those two components makes model building

become considerable simpler, but on the other hand, and more importantly, it35

implies the existence of an era during which the energy densities of dark matter
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and dark energy are strikingly similar. One should therefore not be surprised that1

unifying dark matter energy has generated a considerable theoretical interest.

The first two unifying candidates to appear in the literature were the Chaplygin3

fluid and the tachyon field but here we will consider an emerging alternative: k-

essence. In this paper we investigate scalar field models with non-canonical standard5

kinetic terms because they provide a unified description of dark matter and dark

energy. Given that the equations of motion in classical theories seem to be of second7

order, the only kinetic terms considered will be functions of the square of the

gradient of the scalar field (hereafter k-field). Moreover, since k-fields can be used9

for devising dark energy models, it is common place to interpret those fields as

some kind of matter called k-essence.3–5 Nevertheless, k-fields were not originally11

introduced for describing late time acceleration, but rather they were put forward

as possible inflation driving agents.6,7 Interestingly enough, as shown in Ref. 5, one13

can also construct tracking k-essence cosmologies.

In Ref. 3 it was shown that, under some assumptions on the form of the15

Lagrangian of k-essence models it is possible to obtain examples of universes which

transit between a dark matter dominated era and a dark energy dominated one. In17

that paper, the author considered Lagrangians which functionally depend only on

field derivatives and not on the field itself, and it was argued that if the pressure19

had an extremum at a given value of the field derivative, then the energy density

of the model would scale like the sum of a nonrelativistic dust component and a21

cosmological constant-like component.

By sticking also with Lagrangians with a constant k-field potential, we will show23

that the transition between dark matter and dark energy can also be successfully

modeled by requiring that there be a zero in the pressure. In this case, the param-25

eters of the model can be chosen so that the sound speed is very low, thus letting

the pressureless component behave as dark matter. We illustrate our results with27

two interesting examples: the first one is a quadratic toy model with necessarily

large speed of sound, but the second one is a transient model in which the speed of29

sound may be as small as one wishes.

2. Basic Equations31

Since we are interested in a large-scale description of the universe, we assume k-

essence is the source of a spatially flat homogeneous and isotropic spacetime with33

scale factor a(t) and Hubble factor H = ȧ/a (as usual, here and throughout overdots

denote differentiation with respect to t). Our models are derived from the factor-35

izable Lagrangian L = −V (φ)F (x), where V (φ) is a positive definite potential,

F (x) is an arbitrary function of x, φ is the k-field and x = −φ̇2. That form of the37

Lagrangian is in turn suggested by the Born–Infeld Lagrangian L = −V (φ)
√

1 + x

which was associated with the tachyon by computations in boundary string field39

theory.10 Such Lagrangian also arises in open bosonic string theory11 and is a key

ingredient in the effective theory of D-branes.1241
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Associating the energy–momentum tensor of the k-field with that of a perfect

fluid, we compute the energy density ρ and the pressure p, which read

ρ = V (φ)[F − 2xFx] , (1)

p = −V (φ)F . (2)

The corresponding barotropic index γ is given by1

γ ≡ 1 + p/ρ = −2xFx(F − 2xFx)−1 . (3)

On the other hand, the Einstein field equations are

3H2 = V [F − 2xFx] , (4)

Ḣ = V xFx , (5)

whereas the conservation equation reads3

ρ̇ + 3H(ρ + p) = 0 . (6)

Inserting Eqs. (1) and (3) into the conservation equation (6), we find the field5

equation for the k-field:

(γ/φ̇)̇ + 3H(1 − γ)(γ/φ̇) + V ′(1 − γ)/V = 0 . (7)7

The stability of k-essence with respect to small wavelength perturbations requires

that the effective sound speed7
9

c2

s = px/ρx = Fx(Fx + 2xFxx)−1 , (8)

be positive. However, in Ref. 8 it was shown that a positive sound speed is not11

a sufficient condition for the theory to be stable. In the next section we turn our

attention to the description of unifying dark matter energy using purely kinetic13

k-essence.

3. k-Essence with a Constant Potential15

The first ever studied k-essence models had a constant potential; the inflationary

behaviour they described had, then, a purely kinetic origin and it was dubbed k-17

inflation.3,6,9 Specifically, in such cosmologies inflation is pole-like, i.e. the scale

factor evolves like a negative power of time. An earlier theoretical framework in19

which (pole-like) k acceleration arises naturally is the pre-big bang model of string

cosmology.13 In this setup, acceleration is just due to a scalar field called the dilaton,21

and it will only manifest itself in the string conformal frame. Finally, for other ideas

on kinetic inflation one may take a look at Ref. 14, where acceleration was put down23

to a dynamical Planck mass.

Coming back to k-essence, for a constant potential V = V0, the k-field equation25

(7) admits the first integral

a3Fxφ̇ = 6c/V0 , (9)27
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where c is an arbitrary integration constant. Alternatively, Eq. (9) can be written1

as

Ḣ = −6cφ̇/a3 , (10)3

after using Eq. (5). Combining Eq. (9) with the Friedmann equation (4), the

barotropic index associated with this kind of k-essence can be written in a more5

convenient form

γ = (1 + V 2

0
a6FFx/72c2)−1 . (11)7

We anticipate that there is a large set of models which describe universes that are

dust-dominated in their early stages, that is, γ ≈ 1 or equivalently p ≈ 0, which9

according to the conservation equation (6) implies that ρ ≈ a−3. These models

are precisely generated by the set of functions F which at early times satisfy the11

condition a6FFx � 1. By construction, such models will behave at intermediate

times as if they were filled with a perfect fluid with equation of state p ∝ ρ.13

Finally, such universes end in a stable de Sitter accelerated expansion scenario.

In a way, these models play the same role that the generalized Chaplygin gas,15

i.e. they interpolate between dark matter at early times and dark energy at late

times. However, they do not share some of the unwanted features of Chaplygin17

cosmologies. We dwell now on the details of the construction of those cosmologies.

In this paper we take the class of functions which admit an expansion in powers19

in the form

F (x) = F0 + F1(x − x0) + F2(x − x0)
2 + · · · , (12)21

and then look at the definition of the barotropic index (11), we see that near x0 the

condition a6FFx ≈ 0 leads to γ ≈ 1, obtaining a matter filled universe. Thus, there23

are two options for getting a dust cosmology: either making F (x0) = 0, i.e. taking

F0 = 0, where x0 = x(t0), or making Fx(x0) = 0 as suggested in Ref. 3, i.e. taking25

F1 = 0. To investigate the first option we define the small quantity ε as

x = x0(1 + ε) . (13)27

Then, using Eqs. (1), (9) and (13), and working up to the first order in ε, we obtain

ρ ≈ 12c
√
−x0/a3 . (14)29

Remarkably, we get a dust-like evolution, without making any assumption on F1 and

F2. Nevertheless, at zeroth order in ε the sound speed reads c2
s ≈ F1/(F1 + 4x0F2)

and its value does indeed depend on F1 and F2. If we now impose 4x0F2 � F1 we

get c2

s ≈ 0, i.e. we can describe matter which is easily concentrated by gravity. In

addition, from Eqs. (4) and (5) we get

Fx(x0) = −3H2(x0)/2x0V0 , (15)

Ḣ(x0) = −3/2H2(x0) . (16)
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If we compare now with an evolution a = t2/3, for which H = 2/3t and Ḣ =1

−3H2/2, at x = x0 it follows that t20 = −2/3x0V0F1. For our choice F (x0) = 0

the function F leads to an energy density ρ ∝ a−3 and a scale factor that matches3

a = t2/3 up to the second derivative at t0, which may be chosen arbitrarily by

choosing the value of F1. However, for the option Fx(x0) = 0, we find F0 = 3H2/V0,5

Ḣ(x0) = 0 and t2
0

= 4/3V0F0 showing that the main difference with respect to our

option is that in this case the scale factor only matches a = t2/3 at x0 up to the7

first derivative. Therefore, it is the first option that best describes matter.

In the case of a constant potential and for an expanding universe H > 0, the9

variable Γ = γ/φ̇ of Eq. (7) is a Liapunov function for any function F provided that

φ̇ > 0 is a positive function (if φ̇ < 0, then we must take the variable −Γ). This11

means that γ is a decreasing positive function, so the particular solution Γ = 0,

which corresponds to the de Sitter evolution is stable whenever the barotropic index13

is restricted to 0 ≤ γ < 1.

Our model behaves as a sum of dark matter Eq. (14) with equation of state p = 015

(see Eq. (14) and a cosmological-constant-like component p = −ρ = V0(F (xs) −
2xsFx(xs)), where xs = limt→∞ x. From t = t0 onwards (where x(t0) = x0), the17

matter content of the model will mimic successively all possible p = (γ − 1)ρ fluids

between p = 0 (dust) and p = −ρ (dark energy). So, the model interpolates between19

these two phases. For t < t0, the energy density of the k-essence fluid behaves as

ρ ≈ a−3γ with γ > 1.21

4. An Exactly Solvable Toy Model

The main results we just obtained can be illustrated with an exactly solvable23

quadratic model. To that end we put forward the quadratic function F (x)

F =
b

6
+ x − x2

2b
, (17)25

which becomes null at x = b(1 ± 2/
√

3) and has an extremum at x = b, where b is

a free parameter of the model. Inserting Eq. (17) into Eq. (4) we arrive at27

φ̇2 = −b/3±
√

2b/V0 H . (18)

We then substitute the latter into Eq. (10) and by integration we get the relative29

expansion:

H = ±
[

√

bV0/18 + 9c2
√

2b/V0 η2

]

, (19)31

where a new parameter η =
∫

dt/a3 has been introduced (in addition, an arbitrary

integration constant in the definition of η has been adjusted so that the expression33

scale factor coincides asymptotically at large time t with the one corresponding to

a de Sitter solution). Now, combining the last two equations we get35

φ̇2 = 18c2bη2/V0 (20)
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and the scale factor can be obtained by integrating Eq. (19) to yield1

a3 = −
(

√

bV0/2 η + 9c2
√

2b/V0 η3

)

−1

, η ≤ 0 , (21)

where the singularity has been set at η = −∞. The equation of state and the sound

speed of this toy model are respectively

p = −4bV0/9 + ρ/3 +
√

8b/27V0 ρ1/2 , (22)

c2

s = dp/dρ = 1/3 +
√

2bV0/27ρ−1/2 . (23)

Now, by making a time shift in η so that η = δ − δ0 with δ > 0, it will be possible3

to cast (21) in the form

a3 = −(a0 + a1δ + a2δ
2 + a3δ

3)−1 , (24)5

where a0, a1, a2 and a3 are constants. If we get closer to the singularity (i.e. δ → ∞)

then a3 ∝ δ−3, and taking into account that dη = dδ it turns out that t ∝ δ−2 and7

the universe starts off like a ∝ t1/2. If we now move away from the singularity and

approach x0, then a3 ∝ δ−2, which implies t ∝ δ−1, and the scale factor satisfies9

a ∝ t2/3, as corresponds to a matter field universe. Finally, if we keep on moving

away from the singularity to reach the last epoch of the universe, then a3 ∝ δ−1
11

and t ∝ − ln δ, and the scale factor satisfies a ∝ exp
√

bV0/18 t, as corresponds to

a de Sitter model.13

The equation of state tells us that initially we have a radiative fluid p ≈ ρ/3 (at

high energies), but as the model proceeds to the asymptotic regime the pressure15

tends to a constant value and p = −ρ = −bV0/6, so the fluid acts like a cosmological

constant. The fluid interpolates between these two limits and passes through a dust-17

dominated epoch when p becomes null; by the definition of p as a function of F

this will happen at x = x0 = b(1 − 2/
√

3) for b > 0 (recall that by definition19

x < 0). In what concerns the speed of sound, we know it initially takes the value

corresponding to radiation, i.e. c2
s = 1/3. From there on it grows monotonically21

till it reaches the upper limit c2
s = 1 at the last stage in which the evolution is de

Sitter-like (H = const.) and the energy density takes the limiting value ρ = bV0/6.23

Another way to deduce this result is to note from combining Eqs. (20) and (21)

that on the η → 0 limit we have x ∝ a−6, and the Einstein equation (4) comes25

down to the one corresponding to a free scalar field, i.e. our k-essence behaves like

a stiff fluid with c2

s ≈ 1.27

Now, since the speed of sound is large at the stage where the evolution is dust-

like, there would either be a blow-up of the perturbations or excessively damped29

oscillations.15 Nevertheless, even though this model has not much physical merit,

it is mathematically interesting because it shows the possibility of having k-essence31

which behaves like dust when the pressure is not extremal.
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5. A Transient Model1

Now, we investigate a simple transient kinetic k-essence model introduced in Ref. 9.

It is generated by the following function F3

F = βV −1

0

[

2αα0

√
−x − (−x)α

]

, (25)

where α and α0 are two real constants and β = 1/(2α−1). The energy density and5

the equation of state of the k-field are calculated from Eqs.‘(1) and (25)

ρ = (−x)α , p = β[ρ − 2αα0ρ
1/2α] , (26)7

and the sound speed becomes

c2

s = β[1 − α0ρ
−1/2αβ ] . (27)9

Solving the conservation equation (6), we obtain the energy density in terms of a

ρ = [α0 + c0/a3]2αβ , (28)11

where c0 is a redefinition of the integration constant c. Now we will apply the results

obtained in the last section and we will expand the function F in powers around13

x0 = (2αα0)
2β where F and p become null. In this case we can evaluate ρ(x0) using

Eq. (26) and then calculate the speed of sound given by Eq. (27). The result is15

c2

s = 1/2α whereas for the barotropic index we get γ(x0) = 1. Thus, for large α,

the model is cold dark matter dominated at x = x0, with approximated vanishing17

sound speed, c2
s ≈ 0, while from Eq. (28) the energy density of the transient k-

essence fluid becomes ρ ≈ α0 + c0/a3. In addition, at late times the model ends in a19

de Sitter stage. Such “transient model” may be considered as an alternative model

to the generalized Chaplygin gas. It allows the evolution of the initial perturbations21

in the energy density into a nonlinear regime and near x0 it could play the role of

cold dark matter (i.e. dark matter unable to resist gravitational clumping). Finally,23

the model yields an energy density which scales like the sum of a nonrelativistic

dust component at x0 with equation of state p = 0 and a cosmological-constant-like25

component p = −ρ.

6. Conclusions27

The Universe at present seems to be expanding because of the joint action of dark

energy with negative pressure and pressureless cold dark matter. However, it is un-29

certain where this dark energy could come from, and it is therefore fair to speculate

the possibility of modeling those two components by a single one: k-essence. Fol-31

lowing that line we present a new way of using k-essence for modeling a transition

form dark matter to dark energy.33

Specifically, it suffices that the pressure admits a power-law expansion around

x0. After that we prove that for a large subclass of models the speed of sound of35

the dark matter component can be as low as required for structure formation.

We then move on and discuss an exactly solvable quadratic toy model, which37

is undoubtedly of formal interest because it shows explicitly that the dust epoch is

not necessarily associated with an extremum in the pressure.39



1st Reading
June 24, 2005 19:3 WSPC/146-MPLA 01807

8 L. P. Chimento, M. Forte & R. Lazkoz

Finally, we revisit an exact transient model (a sort of modified Chaplygin gas),1

which describes successfully universes dominated by clustering dark matter at early

times.3
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(2000); C. Armendáriz-Picón, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. D63,
103510 (2001); T. Chiba, ibid. D66, 063514 (2002); L. P. Chimento and A. Feinstein,27

Mod. Phys. Lett. A19, 761 (2004).
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