
ar
X

iv
:1

71
1.

01
48

4v
2 

 [
m

at
h.

C
A

] 
 2

2 
A

pr
 2

01
8

REGULARITY OF MAXIMAL FUNCTIONS ON HARDY–SOBOLEV SPACES

CARLOS PÉREZ, TIAGO PICON, OLLI SAARI, AND MATEUS SOUSA

Abstract. We prove that maximal operators of convolution type associated to smooth kernels are

bounded in the homogeneous Hardy–Sobolev spaces Ḣ1,p(Rd) when 1/p < 1 + 1/d. This range of

exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy–

Sobolev spaces ḣ1,p(Rd) in the same range of exponents.

1. Introduction

Let ϕ : Rd → R be a nonnegative function such that
∫

Rd

ϕ(x) dx = 1.

The maximal operator associated to ϕ is defined as

Mϕf(x) := sup
t>0

ϕt ∗ |f |(x),

where ϕt(x) = t−dϕ(xt ), and f ∈ L1
loc(R

d). The simplest example of such an operator is the

Hardy–Littlewood maximal operator, which from this point on we denote by M . It occurs when

ϕ = 1
|B1|

1B(0,1), where B(x, r) denotes the d-dimensional ball of radius r centered at the x ∈ Rd and

|Br| its Lebesgue measure. The operator M evaluates the supremum of all averages of |f | on balls

centered at x, and for different functions ϕ, the operator Mϕ can be interpreted as a weighted average

variant of M .

It was established by Kinnunen [13] that, for p > 1, M defines a bounded operator in the Sobolev

spaces W 1,p(Rd), i.e, there is C = Cp > 0 such that

‖Mf‖W 1,p(Rd) ≤ C‖f‖W 1,p(Rd). (1.1)

In his paper [13], Kinnunen obtains the bound (1.1) by proving that a function f ∈W 1,p(Rd) satisfies,

for almost every x ∈ Rd, that

|∂jMf(x)| ≤M(∂j(f))(x), (1.2)

and this last inequality readily implies
∑

j

‖∂jMf‖Lp(Rd) ≤ Cp,d
∑

j

‖∂jf‖Lp(Rd), (1.3)

which, combined with the well known Lp-boundedness, implies the W 1,p-boundedness. Despite the

fact Kinnunen’s work in [13] is stated in terms of the classical Hardy–Littlewood case, his proof extends
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to all Mϕ of convolution type that are Lp-bounded, i.e,

|∂jMϕf(x)| ≤ Mϕ(∂j(f))(x),

and henceforth one has the analogue of (1.3) forMϕ, and as a consequence theW 1,p(Rd)-boundedness.

When p = 1, Kinnunen’s result can not hold because of the fact that Mϕf /∈ L1(Rd), and this

completely rules out the possibility of Mϕf belonging to W 1,1(Rd). This means his result is sharp in

the sense of range of exponents. Despite that, one could still ask what happens when examining only

the derivative level of the inequality, i.e, could Mϕ satisfy an inequality like (1.3) for 0 < p ≤ 1? A

natural way to address what happens in this regime is switching from the Lebesgue Lp(Rd) spaces to

the Hardy spaces Hp(Rd).

For 0 < p ≤ ∞, a distribution f : Rd → C lies in the Hardy space Hp(Rd) if its nontangential

Poisson maximal function lies in Lp(Rd). Given a kernel ψ : R → C, the nontangential maximal

function associated to ψ of a function f is defined as

M̃ψf(x) = sup
|x−y|≤t

|ψt ∗ f(y)|,

and f ∈ Hp(Rd) if M̃P f ∈ Lp(Rd), where

P (x) =
Γ(d+1

2 )

π
d+1

2

1

(1 + |x|2)
d+1

2

is the Poisson kernel, and we set

‖f‖Hp(Rd) := ‖M̃P f‖Lp(Rd).

For p > 1, as a consequence of the Lp-boundedness of the nontangential maximal functions and the

Lebesgue differentiation theorem, one has Hp(Rd) = Lp(Rd). When 0 < p ≤ 1 the scenario is different

and Hp(Rd) differs from Lp(Rd), what makes them natural substitutes for the Lp spaces in this range

of exponents.

A distribution f ∈ S ′(Rd) belongs to the homogeneous Hardy–Sobolev spaces Ḣ1,p(Rd) if for j =

1, . . . , d, it has a weak derivative ∂jf in the space Hp(Rd), and in this case we set

‖f‖Ḣ1,p(Rd) :=
∑

j

‖∂jf‖Hp(Rd).

These spaces were first studied by Strichartz [26] and, when 1/p < 1 + 1/d, every distribution f ∈

Ḣ1,p(Rd) is known to coincide with a locally integrable function. In particular, one can always make

sense of Mϕf , as well as its distributional derivatives, whenever ϕ is sufficiently regular, which raises

the natural question of boundedness of Mϕ in these spaces on this range of exponents. We answer

this question for ϕ ∈ S(Rd).

Theorem 1. Let ϕ ∈ S(Rd) be non-negative,
∫

ϕ > 0 and 1/p < 1 + 1/d. If f ∈ Ḣ1,p(Rd), then

Mϕf ∈ Ḣ1,p(Rd) and there is C = C(ϕ, p, d) > 0 such that

‖Mϕf‖Ḣ1,p(Rd) ≤ C‖f‖Ḣ1,p(Rd). (1.4)

In particular, Mϕ is a bounded operator from Ḣ1,p(Rd) to Ḣ1,p(Rd).
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Theorem 1 offers a new way to obtain a derivative level boundedness result as (1.1) which avoids

(1.2) and introduces Hardy space regularity of maximal functions into the fold for the first time. There

are three main steps in the proof of Theorem 1. Let ψ ∈ C∞
c (B(0, 1)), such that ‖∇ψ‖L∞, ‖ψ‖L∞ ≤ 1

and ψ ≥ 0. Given x, y ∈ Rd satisfying |x− y| ≤ t, one has

|(∂jMϕf) ∗ ψt(y)| = |Mϕf ∗ (∂jψt)(y)|

≤ 2t−d−1

∫

B(x,2t)

(Mϕf(z)− c)+ dz
(1.5)

for any c ≤ infz∈B(x,2t) Mϕf(z). It is a well known result [10, Theorem 2.1.4] that there is a constant

C = C(ψ) > 0 such that

1

C
‖M̃ψf‖Lp(Rd) ≤ ‖f‖Hp(Rd) ≤ C‖M̃ψf‖Lp(Rd), (1.6)

and in order to obtain Theorem 1, the first step is the choice of an appropriate c ∈ R for each t in

(1.5). We then split B2t into two sets, a local and a non-local piece. The second step is the analysis of

the local piece and has two main ingredients: a characterization of Hardy–Sobolev spaces by Miyachi

[24], which is given in terms of the following maximal operator

Npf(x) = sup
B∋x

inf
c∈R

|B|1/d
(

−

∫

B

|f(y)− c|p dy

)1/p

, (1.7)

and a self-improvement lemma from [17]. The third step is the study of the non-local piece, in which

we will get a bound in terms of the nontangential maximal function associated to ϕ. At this point the

aforementioned quasi-norm equivalence (1.6) will come into play. Lastly, Theorem 1 is sharp in term

of the range of exponents, and we show it in the last section.

As pointed out, Hardy spaces are a natural extension of the Lebesgue spaces when 0 < p ≤ 1, and

although this result is the first of this kind, another very natural question is that of what happens in

the W 1,1 case. Given a maximal operator Mϕ, it is possible to extend (1.3) to p = 1, in the sense that

there is a constant C > 0 such that

‖∇Mϕf‖L1(Rd) ≤ C‖∇f‖L1(Rd) (1.8)

for every function f ∈ W 1,1(Rd). There has been a lot of effort in understanding this question in the

last few years, as well as the problem of determining the optimal constant in (1.8). The first work in

this direction is due to Tanaka [27], who studied the case of ϕ(x) = 1[0,1](x), the one-sided Hardy–

Littlewood maximal operator, and obtained (1.8) with C = 1. Later, Kurka proved the same result

for the one-dimensional Hardy–Littlewood maximal operator, with C = 240.004. Still in the one-

dimensional setting, the same results for the Heat and the Poisson kernels were obtained by Carneiro

and Svaiter [8] with C = 1. Other interesting results related to the regularity of maximal operators

are [1, 2, 4, 5, 6, 7, 11, 12, 14, 18, 19, 25, 28].

Recently, Luiro [20] proved that inequality (1.8) is true in any dimension for the uncentered Hardy–

Littlewood maximal function, provided one considers only radial functions. Later Luiro and Madrid

[21] extended the radial paradigm to the uncentered fractional Hardy–Littlewood maximal function.

As a straightforward consequence of Theorem 1, we obtain partial progress towards the understanding

of the W 1,1 scenario.
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Corollary 2. Let ϕ ∈ S(Rd), and
∫

ϕ > 0. If f ∈ W 1,1(Rd) and ∂1f, . . . , ∂df ∈ H1(Rd), then there

is a C = C(ϕ, d) > 0 such that

‖∇Mϕf‖L1(Rd) ≤ C‖f‖Ḣ1,1(Rd). (1.9)

In the same spirit of [20, 21], Corollary 2 implies that |∇Mϕf | ∈ L1(Rd) under stronger conditions

than just f ∈ W 1,1(Rd), which sheds new light on the question if one might have (1.8) for general

f ∈ W 1,1(Rd).

1.1. A word on forthcoming notation. We denote by d ≥ 1 the dimension of the underlying space.

We represent the characteristic function of E by 1E , and averages of f ∈ L1(E) are denoted as

1

|E|

∫

E

f(y) dy = −

∫

E

f(y) dy = fE

whenever E is a measurable set with finite Lebesgue measure, and reserve the letter B for euclidean

balls, with αB meaning the ball with same center and α times the radius . If not otherwise stated,

all spaces of functions are defined over the whole Rd, e.g. L1 = L1(Rd). We denote by ‖f‖r,∞ the

Lr,∞(Rd) norm of f , i.e, the weak Lr(Rd)-norm of f . The positive part of a function f is denoted by

(f)+ := 1{f>0}f . We denote a . b if a ≤ Cb for some constant C > 0, and a h b if a . b and b . a.

A possible subscript, such as a .p b, indicates particular dependency on some other value (here p). In

the proofs, C represents a generic constant, and may change even within a line.

Given a locally integrable function ϕ ≥ 0, we define the following auxiliary maximal functions (for

f ∈ L1
loc)

M̃a
ϕf(x) = M̃ϕ1/a

f(x) := sup
(y,t)∈{(y,t):|x−y|<at}

|ϕt ∗ f(y)|, a > 0

Mpf(x) = sup
r>0

(

−

∫

B(x,r)

|f(y)|p dy

)1/p

, p > 0

If a = 1 or p = 1, they will be suppressed from the notation. Note that the definition of M̃a
ϕf makes

sense for f a tempered distribution provided that ϕ is a Schwartz function.

2. Preliminaries

Given a function f ∈ L1
loc, let Np(f) be the maximal function defined in (1.7). This operator was

first considered by Calderón [3], when p > 1, to characterize functions with weak derivatives in Lp

spaces, and later studied by Miyachi [24], for 0 < p ≤ 1, in order to obtain similar characterizations

for Hardy spaces. As our first ingredient, we use his characterization in the form of the next result.

Lemma 3 (Calderón [3], Miyachi [24]). Let 1/p < 1 + 1/d and f ∈ L1
loc. Then

‖Npf‖Lp h ‖f‖Ḣ1,p (2.1)

Proof. This follows from Theorem 3 (ii) and Theorem 4 (ii) in [24]. �

Our second ingredient is a self-improvement from [17]. Let r ∈ (0,∞). Let B be the family of all

Euclidean balls in Rd. A functional a : B → [0,∞] satisfies the condition Dr if there is a finite constant
4



c such that
∑

i

a(Bi)
r|Bi| ≤ cra(B)|B|

whenever the sum is over a family of pairwise disjoint sub-balls of B. This condition was introduced

in [22] and further exploited in [23].

For any locally finite Borel measure µ, the functional

a(B) = |B|1/d
(

µ(B)

|B|

)1/q

satisfies Ddq/(d−q). In particular, r = dq/(d− q) > 1 if and only if 1/q < 1 + 1/d.

Let 0 < q < p. For every f ∈ Lqloc it always holds

inf
c∈R

(

−

∫

B

|f − c|q
)1/q

≤ C|B|1/n
(

−

∫

B

|Npf |
q dy

)1/q

.

Applying Corollary 1.4 in [17] together with Lemma 3, we obtain the following lemma:

Lemma 4 (Lerner–Pérez [17]). Let p, q > 0 be such that 1/p < 1/q < 1 + 1/d and let f ∈ L1
loc(R

d)

have first distributional derivatives in Hp(Rd). Then

|B|−1/r‖1B(f − fB)‖r,∞ ≤ C|B|1/d
(

−

∫

2B

|Npf |
q dy

)1/q

for all balls B and r = dq
d−q .

3. Proof of Theorem 1

3.1. The case of compact support. Let f ∈ Ḣ1,p(Rd) and ϕ be smooth and compactly supported.

By a simple dilation argument, we can assume that supp(ϕ) ⊂ B(0, 1). Fix j ∈ {1, . . . , d} and

ψ ∈ C∞
0 (B(0, 1)) with ‖∇ψ‖L∞, ‖ψ‖L∞ ≤ 1 and ψ ≥ 0. As pointed out in (1.5), if |x− y| ≤ t then

|(∂jMϕf) ∗ ψt(y)| = |(∂j(Mϕf − c)) ∗ ψt(y)|

= |(Mϕf − c) ∗ (∂jψt)(y)|

≤ t−d−1

∫

B(x,2t)

(Mϕf(z)− c)+ dz

for any c ≤ infz∈B(x,2t) Mϕf(z). Since ‖∂j|f |‖Hp . ‖∂jf‖Hp as a consequence of [15, Theorem 1], it

suffices to prove the claim for |f |. Hence, without loss of generality, we may assume that f ≥ 0. We

choose c = infz∈B(x,2t)Mϕf . We set

E1 = {y ∈ B(x, 2t) : Mϕf(y) = sup
r<t

ϕr ∗ f(y)},

E2 = {y ∈ B(x, 2t) : Mϕf(y) = sup
r≥t

ϕr ∗ f(y)},

and we proceed to analyze each set separately.

First, we note that

fB(x,4t) − c = fB(x,4t) − inf
z∈B(x,2t)

Mϕf(z) . −

∫

B(x,4t)

|f(y)− fB(x,4t)| dy. (3.1)

5



Second, since Mϕf .Mf , we have
∫

E1

(Mϕf(y)− fB(x,4t))
+ dy ≤

∫

E1

Mϕ(|f − fB(x,4t)|1B(x,4t))(y) dy

.

∫

E1

M(|f − fB(x,4t)|1B(x,4t))(y) dy.

In the first inequality above we have used that supp(ϕ) ⊂ B(0, 1) and the definition of E1. Since for

any h ∈ L1
loc and r > 1 one has

‖h‖L1(E) ≤ r′|E|1−1/r‖h‖r,∞,

for any choice of q ∈ (d/(d+ 1), p), we have for r = dq/(d− q) that
∫

E1

(Mϕf(y)− (Mϕf)B(x,4t))
+ dy . |E1|

1−1/r‖M(|f − fB(x,4t)|1B(x,4t))‖Lr,∞

. |B4t|
1−1/r‖(f − fB(x,4t))1B(x,4t)‖Lr,∞,

the last inequality being due to boundedness ofM on Lr,∞(Rd) when r > 1. Now we appeal to Lemma

4 to both the display above as well as to the quantity (3.1) to obtain

∫

E1

(Mϕf(y)− c)+ dy . td+1

(

−

∫

B(x,8t)

|Npf(y)|
q dy

)1/q

≤ td+1Mq(Npf)(x) (3.2)

We move on to estimate the integral over E2. Let y ∈ E2, z ∈ B(x, 2t) and r > t. Let ~e = y−z
|y−z| .

Then

ϕr ∗ f(y)− ϕr ∗ f(z) =

∫

Rd

f(w)[ϕr(y − w)− ϕr(z − w)] dw

=

∫

Rd

∫ |y−z|

0

(f(w)~e ) · ∇ϕr (z − w + τ~e) dτ dw

≤ |y − z|

d
∑

j=1

sup
|η|≤|y−z|

|f ∗ ∂jϕr (z + η) |

since |(z + η)− z| = |η| ≤ |y − z| ≤ 4t < 4r, and |f ∗ ∂jϕ| = |∂jf ∗ ϕ|, we have

ϕr ∗ f(y)− ϕr ∗ f(z) ≤ 4t
d
∑

j=1

sup
|w−z|≤4r

|∂jf ∗ ϕr (w) | ≤ 4t
d
∑

j=1

M̃4
ϕ(∂jf)(z).

Consequently, for y ∈ E2

Mϕf(y)− inf
z∈B(x,2t)

Mϕf(z) = sup
r>t

inf
z∈B(x,2t)

sup
ρ>0

(ϕr ∗ f(y)− ϕρ ∗ f(z))

≤ sup
r>t

inf
z∈B(x,2t)

(ϕr ∗ f(y)− ϕr ∗ f(z))

≤ 4t inf
z∈B(x,2t)

M̃4
ϕ(∂jf)(z)

≤ 4tM̃4
ϕ(∂jf)(x),

6



and we conclude
∫

E2

(Mϕf − c)+ dy ≤ 4t|E2|M̃
4
ϕ(∂jf)(x) . td+1M̃4

ϕ(∂jf)(x). (3.3)

Combining (1.5), (3.2) and (3.3) we have

sup
|x−y|≤t

|(∂kMϕf) ∗ ψt(y)| .MqNpf(x) +

d
∑

j=1

M̃4
ϕ(∂jf)(x),

and since p/q > 1, it from follows boundedness of Mq on Lp, the already mentioned quasi-norm

equivalence (1.6) in Hp applied to both ψ and ϕ1/8, and Lemma 3 that

‖(Mϕf)‖Ḣ1,p . ‖Npf‖Lp +

d
∑

j=1

‖M̃4
ϕ(∂jf)‖Lp . ‖f‖Ḣ1,p ,

which is the desired result.

3.2. The case of a general support. Given ϕ ∈ S(Rd), for some constant C = C(ϕ) one has

ϕ(x) ≤ C

∞
∑

k=0

2−k 1
|B(0,2k)|

1B(0,2k).

We can proceed now as in the case of compact support and divide B(x, 2t) into E1 and E2. In E2 the

support does not play a role in the proof. In E1 one just has to observe that

(Mϕf − fB(x,4t))
+ .

∑

k

2−kM(|f − fB(x,4t)|1B(x,2k(4t)))

≤
∑

k

2−k[M(|f − fB(x,2k(4t))|1B(x,2k(4t))) + |fB(x,4t) − fB(x,2k(4t))|]

=
∑

k

2−k[M(|f − fB(x,2k(4t))|1B(x,2k(4t))) + |(f − fB(x,2k(4t)))B(x,4t)|]

.
∑

k

2−kM(|f − fB(x,2k(4t))|1B(x,2k(4t))).

Now integrating over E1 and applying Lemma 4 in each B(x, 2k(4t)) as done before will imply the

desired result for Schwartz kernels.

4. Remarks

4.1. The hypothesis on the kernels. One might wonder if the hypothesis ϕ ∈ S(Rd) can be

weakened, to obtain, for instance, the same result for the Hardy-Littlewood maximal function. In the

analysis of the local piece, smoothness is not used at all, so this part of the analysis holds as long as

the kernel has enough decay. On the other hand, the analysis of the non-local piece depends of norm

equivalence considerations in Hp(Rd). To keep technicalities to a minimum we state it only in terms

of Schwartz functions, but as long as Mϕ satisfies (1.6) and decays faster than (1+ |x|)−d−1, the same

techniques apply. Unfortunately, this means the Hardy-Littlewood case falls out of the scope of the

techniques employed.

4.2. Sharpness of the results in term of the range of exponents. One might wonder if its

possible to extend the results in Theorem 1 to the case 1/p ≤ 1 + 1/d. The answer is negative.
7



If one considers any smooth compactly supported function f with vanishing moments up to order

1, then f ∈ Ḣ1, d
d+1 (Rd). On the other, for any kernel ϕ ∈ C∞

c (R), one has for j = 1, . . . , d that

(∂jMϕ(f))
′(x) h |x|−(d+1) when |x| → ∞, which implies it does not belong to L

d
d+1 (Rd), and therefore

H
d

d+1 (Rd). To see this is true, we use the following observation due to Luiro [18]: if for some t > 0

one has Mϕ(f)(x) = |f | ∗ ϕt(x) then

∂jMϕ(f)(x) = ∂j |f | ∗ ϕt(x) =
1
t |f | ∗ (∂jϕ)t(x)

Now, when |x| → ∞, any admissible t will be roughly the size of |x|, and now by standart considerations

this will imply ∂jMϕ(f)(x) h |x|−(d+1).

4.3. Local Hardy spaces. One can consider similar questions on the local Hardy spaces hp(Rd)

introduced by Goldberg [9]. They are defined similarly as the spaces Hp(Rd), but with a truncated

nontangential maximal operator, i.e, f ∈ hp(Rd) when M̃1
P f ∈ Lp(Rd), where

m̃P f(x) = sup
|x−y|≤t≤1

|Pt ∗ f(y)|.

A function belongs to ḣ1,p(Rd) if ∂1f, . . . , ∂df ∈ hp(Rd) and we set

‖f‖ḣ1,p(Rd) :=
∑

j

‖∂jf‖hp(Rd).

If one considers the operator

mϕf(x) := sup
0<t≤1

ϕt ∗ |f |(x), (4.1)

we have the following result

Theorem 5. Let ϕ ∈ S(Rd) and 1/p < 1 + 1/d. Then mϕ is a bounded operator from ḣ1,p(Rd) to

ḣ1,p(Rd).

The proof of this result follows the same lines as Theorem 1 since one has the analogue of Lemma

3 (see [24]) for the ḣ1,p spaces, as well as the norm equivalence with any truncated nontangential

maximal operator associated to a Schwartz kernel, so we omit the details.
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