1,182 research outputs found

    Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020

    Get PDF
    Leaf area index (LAI) with an explicit biophysical meaning is a critical variable to characterize terrestrial ecosystems. Long-term global datasets of LAI have served as fundamental data support for monitoring vegetation dynamics and exploring its interactions with other Earth components. However, current LAI products face several limitations associated with spatiotemporal consistency. In this study, we employed the back propagation neural network (BPNN) and a data consolidation method to generate a new version of the half-month 1/12∘ Global Inventory Modeling and Mapping Studies (GIMMS) LAI product, i.e., GIMMS LAI4g, for the period 1982–2020. The significance of the GIMMS LAI4g was the use of the latest PKU GIMMS normalized difference vegetation index (NDVI) product and 3.6 million high-quality global Landsat LAI samples to remove the effects of satellite orbital drift and sensor degradation and to develop spatiotemporally consistent BPNN models. The results showed that the GIMMS LAI4g exhibited overall higher accuracy and lower underestimation than its predecessor (GIMMS LAI3g) and two mainstream LAI products (Global LAnd Surface Satellite (GLASS) LAI and Long-term Global Mapping (GLOBMAP) LAI) using field LAI measurements and Landsat LAI samples. Its validation against Landsat LAI samples revealed an R2 of 0.96, root mean square error of 0.32 m2 m−2, mean absolute error of 0.16 m2 m−2, and mean absolute percentage error of 13.6 % which meets the accuracy target proposed by the Global Climate Observation System. It outperformed other LAI products for most vegetation biomes in a majority area of the land. It efficiently eliminated the effects of satellite orbital drift and sensor degradation and presented a better temporal consistency before and after the year 2000. The consolidation with the reprocessed MODIS LAI allows the GIMMS LAI4g to extend the temporal coverage from 2015 to a recent period (2020), producing the LAI trend that maintains high consistency before and after 2000 and aligns with the reprocessed MODIS LAI trend during the MODIS era. The GIMMS LAI4g product could potentially facilitate mitigating the disagreements between studies of the long-term global vegetation changes and could also benefit the model development in earth and environmental sciences. The GIMMS LAI4g product is open access and available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023).</p

    On the causes of trends in the seasonal amplitude of atmospheric CO2

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordNo consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO2 in the northern latitudes. In this study, we used atmospheric CO2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO2 . We found significant (p 50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO2 concentration (eCO2 ) and climate change are dominant drivers of the increase in AMPP-T and AMPT-P in the high latitudes. At the Barrow station, the observed increase of AMPP-T and AMPT-P over the last 33 years is explained by eCO2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO2 during carbon uptake period. Air-sea CO2 fluxes (10% for AMPP-T and 11% for AMPT-P ) and the impacts of land-use change (marginally significant 3% for AMPP-T and 4% for AMPT-P ) also contributed to the CO2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle.This study was supported by the National Natural Science Foundation of China (41530528), the BELSPO STEREO project ECOPROPHET (SR00334), the 111 Project (B14001), and the National Youth Top‐notch Talent Support Program in China. Philippe Ciais, Ivan A Janssens and Josep Peñuelas acknowledge support from the European Research Council through Synergy grant ERC‐2013‐SyG‐610028 “P‐IMBALANCE”

    Cyclic cosmology from Lagrange-multiplier modified gravity

    Full text link
    We investigate cyclic and singularity-free evolutions in a universe governed by Lagrange-multiplier modified gravity, either in scalar-field cosmology, as well as in f(R)f(R) one. In the scalar case, cyclicity can be induced by a suitably reconstructed simple potential, and the matter content of the universe can be successfully incorporated. In the case of f(R)f(R)-gravity, cyclicity can be induced by a suitable reconstructed second function f2(R)f_2(R) of a very simple form, however the matter evolution cannot be analytically handled. Furthermore, we study the evolution of cosmological perturbations for the two scenarios. For the scalar case the system possesses no wavelike modes due to a dust-like sound speed, while for the f(R)f(R) case there exist an oscillation mode of perturbations which indicates a dynamical degree of freedom. Both scenarios allow for stable parameter spaces of cosmological perturbations through the bouncing point.Comment: 8 pages, 3 figures, references added, accepted for publicatio

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Tachyonic Inflation in a Warped String Background

    Full text link
    We analyze observational constraints on the parameter space of tachyonic inflation with a Gaussian potential and discuss some predictions of this scenario. As was shown by Kofman and Linde, it is extremely problematic to achieve the required range of parameters in conventional string compactifications. We investigate if the situation can be improved in more general compactifications with a warped metric and varying dilaton. The simplest examples are the warped throat geometries that arise in the vicinity of of a large number of space-filling D-branes. We find that the parameter range for inflation can be accommodated in the background of D6-branes wrapping a three-cycle in type IIA. We comment on the requirements that have to be met in order to realize this scenario in an explicit string compactification.Comment: Latex, JHEP class, 20 pages, 4 figures. v2: references added, small error in section 7 corrected, published versio

    Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South‐to‐North Water Diversion

    Get PDF
    Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production

    Inflationary attractor in Gauss-Bonnet brane cosmology

    Full text link
    The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for both the canonical and Born-Infeld fields for any allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field corrected, conclusion correcte

    Non-minimally Coupled Tachyonic Inflation in Warped String Background

    Full text link
    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large TT along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured.Comment: minor typos corrected and references adde
    corecore