25 research outputs found

    An ultrasonic technique for the measurement of elastic properties of soft surface coatings

    Get PDF
    The properties of thin layers of materials can be different from those in the bulk form. The response of a coating to any given load and its ability to remain bonded to the substrate will depend on its elastic modulus and Poisson's ratio. In this study a measurement method based on ultrasonic bulk wave reflection was evaluated. As a model system, a thin layer of polyethylene was pressed between two solid steel bodies. The reflection spectra of longitudinal and shear ultrasonic waves were recorded from the coating. The frequencies at which the layer resonates were measured and from this the wave speeds deduced. The Poisson's ratio can be determined from these two wave speeds and if the layer thickness is known the modulus is also available. The tests yielded reasonable values for both. This approach is only suitable if the layer can be made to resonate by the available ultrasonic frequencies; typically this will be the case for thicker coatings (tens of microns). Further, good coupling between the layer material and the steel bodies is necessary so that the interfaces do not themselves act to reflect ultrasound. This is better achieved with a smooth soft coating

    Evaluation of an ultrasonic method for measurement of oil film thickness in a hydraulic motor piston ring

    Get PDF
    The efficiency of a hydraulic motor depends on the lubrication performance of the piston ring. If the film is too thin then wear occurs quickly, if it is too thick then oil is lost into the cylinder and efficiency is reduced. In this paper a technique for oil film measurement based on ultrasonic reflection is investigated. This has the potential to be used non-invasively on real components. An ultrasonic pulse will reflect from a thin film interposed between two solids. The proportion of the pulse that is reflected depends on the stiffness of the intermediate layer. If the acoustic properties of the film material are known, then the stiffness can readily be used to determine the film thickness. This principle has been employed for the piston ring lubrication case. A piston/cylinder test bench has been used to evaluate the ultrasonic method. A focusing piezo-electric transducer is mounted outside the cylinder and ultrasonic pulses reflected back from the inner bore. The variation of these pulses as the piston ring passes underneath is investigated and used to determine oil film thickness. Films in the range 0.7 to 1.3 μm were measured; the thickness did not depend strongly on either ring speed or sealed pressure. Several practical aspects were investigated such as, attenuation in the cylinder material, response time, and transducer resolution. Whilst this study demonstrated that film thickness measurement is feasible, there are a number of practical considerations that require further work, principally the focusing and coupling of the ultrasonic transducer and the response time

    Monitoring of lubricant film failure in a ball bearing using ultrasound

    Get PDF
    A lubricant-film monitoring system for a conventional deep groove ball bearing (type 6016, shaft diameter 80 mm, ball diameter 12.7 mm) is described. A high-firequency (50 MHz) ultrasonic transducer is mounted on the static outer raceway of the bearing. The transducer is focused on the ball-raceway interface and used to measure the reflection coefficient of the lubricant in the "contact" ellipse between bearing components. The reflection coefficient characterizes the lubricant film and can be used to calculate its thickness. An accurate triggering system enables multiple reflection measurements to be made as each lubricated contact moves past the measurement location. Experiments are described in which bearings were deliberately caused to fail by the addition of acetone, water and sand to the lubricant. The ultrasonic reflection coefficient was monitored as a function of time as the failure occurred. Also monitored were the more standard parameters, temperature and vibration. The results indicate that the ultrasonic measurements are able to detect the failures before seizure. It is also observed that, when us,ed in parallel, these monitoring techniques offer the potential to diagnose the failure mechanism and hence improve predictions of remaining life

    An ultrasonic frequency sweep interferometer for liquids at high temperature: 2. Mechanical assembly, signal processing, and application

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94631/1/jgrb14130.pd

    Nondestructive Testing for Environmental Degradation of Adhesive Joints

    Full text link
    The work described here is an ultrasonics based experimental study which aims to address the lack of a reliable technique for detecting strength loss in adhesive joints after exposure to hot wet environments. This is manifested as a change in the failure mode of an adhesive system from a cohesive failure in the as-made condition, that is failure through the adhesive, to an adhesive failure, failure between the adhesive and adherend, after exposure to a hot, wet environment. This work has been concerned with the bonding of aluminum using two part epoxy adhesive. The reason for the change in failure mode is thought to lie in changes in the oxide layer which is present between the aluminum and the epoxy. The oxide layer generally has a porous structure into which epoxy can penetrate, forming a micro-composite layer, referred to as the interlayer. It is the detection of changes in this interlayer which present the biggest problem to current N.D.T. techniques for adhesive joints [1]. This is largely a problem of size, the interlayer being typically no larger than a few microns thick, sandwiched between several hundred microns of epoxy and several millimetres of aluminum. It is the need to detect changes in such a thin layer through such a thick layer which presents the biggest problem

    Measurement of Reflectance Function for Layered Structures Using Focused Acoustic Waves

    Get PDF
    In the ultrasonic NDE of layered materials and structures, such as bonded joint, coating, and in particular the composite material, the surface or Lamb wave velocity or the reflection and transmission coefficient are measured, to determine for examples, the elastic constants, the anisotropy and the integrity of the materials, etc. A commonly used technique to determine locally the surface or Lamb wave velocity V g is based on the measurement of the reflection minima or the transmission maxima at oblique incidence of the test sample. It is supposed that at the critical incident angle θ c where the reflection coefficient appears the minima, the surface or Lamb waves are favorably generated and V g =V o/sinθ c where V 0 is the wave speed in coupling liquid. So, the determination of the reflection function is essential and important. In general, the acoustic reflection or transmission coefficient of a layered medium depends on the wave incident angle θ, the wave frequency ƒ and the orientation angle φ if the material is anisotropic. To obtain the whole information of this reflectance function R(θ,φ,ƒ), one needs to insonify the structure at varying incident and orientation angles and do the frequency spectroscopy using the wide-band transducer

    A Comparison of Different Methods for the Detection of a Weak Adhesive/Adherend Interface in Bonded Joints

    Get PDF
    There are three main classes of defect which occur in adhesive joints: complete disbonds, voids or porosity in the adhesive layer, poor cohesion (ie a weak adhesive layer) and poor adhesion (ie a weak interface between the adhesive layer and one or both adherends). The detection of disbonds, voids and porosity generally presents few problems and significant progress has been made towards the development of techniques for monitoring the cohesive properties of the adhesive layer [1]. However, there is no satisfactory method for the detection of a weak interface between the adhesive and the adherend(s) and this remains one of the major challenges in NDE. It is the interlayer which is affected by the common problem of slight contamination due to, for example, grease on the adherend surfaces prior to bonding. The adhesive/adherend interface is particularly important in aluminium-aluminium joints in which an inappropriate interface structure can cause greatly enhanced susceptibility to environmental attack [2]. Inspection of the interlayer is difficult because it is frequently only of the order of 1µm thick, compared with an adhesive layer thickness of the order of 100 µm

    Wave interaction with defects in pressurised composite structures

    Get PDF
    There exists a great variety of structural failure modes which must be frequently inspected to ensure continuous structural integrity of composite structures. This work presents a Finite Element (FE) based method for calculating wave interaction with damage within structures of arbitrary layering and geometric complexity. The principal novelty is the investigation of pre-stress effect on wave propagation and scattering in layered structures. A Wave Finite Element (WFE) method, which combines FE analysis with periodic structure theory (PST), is used to predict the wave propagation properties along periodic waveguides of the structural system. This is then coupled to the full FE model of a coupling joint within which structural damage is modelled, in order to quantify wave interaction coeffcients through the joint. Pre-stress impact is quantified by comparison of results under pressurised and non-pressurised scenarios. The results show that including these pressurisation effects in calculations is essential. This is of specific relevance to aircraft structures being intensely pressurised while on air. Numerical case studies are exhibited for different forms of damage type. The exhibited results are validated against available analytical and experimental results
    corecore