
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

University of London

THE REFLECTION COEFFICIENT FROM INTERFACE LAYERS

IN NDT OF ADHESIVE JOINTS

by

Tomasz Piotr Pialucha

A thesis submitted to the University of London for

the degree of Doctor of Philosophy

Department of Mechanical Engineering

Imperial College of Science, Technology and Medicine

January 1992

LONDON
UNIV



Abstract

The structural integrity of adhesive joints is known to be dependent on the properties of the

adhesive (cohesive properties) and the properties of the adherend/adhesive interface (adhesive

properties). Despite a substantial research effort worldwide there is no currently available

nondestructive technique to test for interfacial defects in adhesive joints. However, ultrasonic

methods have been identified as the most promising techniques for these purposes. It is

therefore desirable to asses their suitability.

This thesis presents an evaluation of the ultrasonic reflection coefficient method and, in

particular, the oblique incidence method, for the nondestructive characterisation of

adherend/adhesive interfaces in bonded joints. The technique uses two ultrasonic transducers

inclined at an angle, operating in a pitch-catch mode, with respect to the tested joint.

A theoretical model is developed which is capable of accurate predictions of reflection and

transmission coefficients from isotropic multilayered, viscoelastic plates, excited at normal and

oblique incidences by ultrasonic transducers of finite sizes. Experiments are performed on

simple model systems for the theory validation. The measured reflection coefficient amplitudes

are found to be within 5 % of the predicted values.

Theoretical and experimental work is carried out to fmd the optimal arrangement of the probes,

frequency range and type of reflection in order to achieve maximum sensitivity to changes in the

adherend/adhesive interfaces. It is found that the oblique incidence techniques can offer a

substantial increase in sensitivity to interfacial properties over the current standard inspection

techniques, but the results obtained indicate that the improvement is unlikely to be sufficient for

the technique to be used as a new reliable nondestructive procedure.
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CHAPTER 1

Background

1.1 Introduction

In order to maintain their top positions in world markets, highly developed industrial nations

constantly increase the quality and cost effectiveness of their products. It is therefore of crucial

importance for these countries to be innovative in design, manufacturing and service support of

their products. Nondestructive testing is the field of science and engineering which provides the

industry with the necessary tools to determine the quality of products during both

manufacturing and service. Nondestructive testing, therefore, plays an ever increasing role in

maintaining the leading edge over the competitors in areas where the reliability of products are

of prime importance, especially in the nuclear, defence and aerospace industries.

Nondestructive testing (NDT) techniques are those which can define the quality of the product

without causing damage to it. It is therefore natural that nondestructive testing enjoys increasing

demand in industry and a substantial research effort is put towards development and

improvement of NDT methods.

In section 1.2 different types of defects found in adhesive joints are described and classified

into three basic categories: disbonds and porosity, poor cohesion and poor adhesion.

In section 1.3 the various NDT techniques used for the detection of disbonds and porosity are

reviewed and the current advances in testing for cohesive properties in adhesive joints are

presented.

In section 1.4 the problem of testing for poor adhesion using ultrasonic waves, which is the

subject of this thesis, is given more detailed attention. In this section various theoretical models

of an interface between two solids are presented. Two different testing strategies for poor

adhesion, the modal approach and the reflection coefficient approach, are introduced and

discussed in more detail.

In section 1.5 the main objectives of this thesis are formulated and the main anticipated
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difficulties are listed. In section 1.6 the outline of the thesis is presented and the contents and a

purpose of each chapter are briefly described.

1.2 Defects in adhesive joints

The types of defects found in adhesive joints have been classified by many authors (Kinloch

1983, Adams and Wake 1984, Guyott et al. 1986). The description given here follows that of

Cawley (1992).

There are three different classes of defects which occur in adhesive joints; these are:

1. complete disbonds, voids or porosity in the adhesive layer;

2. poor cohesion (ie a weak adhesive layer);

3. poor adhesion (ie a weak interface between the adhesive layer and one or both adherends);

and an ultimate goal for NDT techniques is to detect all three. Each of these factors affecting

joint strength is discussed in more detail below.

Porosity is caused by volatiles and entrained air in the adhesive. It is therefore present to some

extend in most bondlines. Voids in the adhesive are similar to porosity except that the individual

defect volume can be much greater. They are caused by air or gases becoming trapped by the

pattern of laying the adhesive.

Disbonds are essentially large, flat voids which can be caused by the presence of grease or

other contaminants on an adherend. In this case, the defects surfaces are generally in close

proximity or touching which can make them very difficult to detect. Disbonds may also occur

as a result of impact or environmental degradation after manufacture.

It should be emphasised that the significance of a particular defect depends critically on its

position within a joint. For example, Wang er a!. (1971) showed that a large disbonded area in

the central region of a lap joint had little effect on the joint strength. However, a smaller defect

towards the end of the overlap would have a serious effect because of the much greater stress in

this region.

A weak adhesive layer, giving poor cohesive properties, can result from either incomplete

mixing, incorrect formulation or inadequate cure of the adhesive. Incomplete mixing is chiefly a

problem with two part adhesives, and their incorrect formulation can result from, for example,

the dispenser of one of the parts being partially blocked. In general, film adhesives avoid these

problems so with these adhesive systems, miscuring is the most likely cause of poor cohesive
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properties.

If the adherend surface is contaminated by oil deposits or loose oxide layers prior to bonding,

or if a two part adhesive is left too long after mixing and forms a 'skin', the interface between

the adhesive and the adherend may be weak, leading to poor adhesion. A disbond may be

regarded as an extreme case of poor adhesion.

The adhesive/adherend interface is very important in determining the resistance of a joint to

environmental attack, particularly when one or both adherends are aluminium. Before bonding,

the adherend surfaces are not only cleaned carefully, but they may be treated to grow favourable

oxide or other layers which reduce their succeptibility to environmental attack (Kinloch 1983).

Some manufacturers apply a primer to the freshly prepared surfaces while others insist that the

joints are made within fixed time.

1.3 Testing for disbonds, porosity and poor cohesion

The field of the NDT of adhesive joints has been reviewed by several authors in the last five

years (Stone 1986, Thompson and Thompson 1988, Guyott et a!. 1986, Light and Kwun

1989). The description given here follows that of Cawley (1992).

1.3.1 Disbonds, voids and porosity

Conventional Ultrasonics

Time domain ultrasonics is one of the most widely used methods of nondestructive

examination. It can be used readily to detect voids and disbonds and has the potential for

detecting very small, distributed defects such as porosity. The test may be carried out either

with a single transducer in pulse-echo mode, or with two transducers in through transmission

mode.

C'
As the pulse of ultrasound passes through the joint, part of its energy QS reflected at each

boundary. The amplitude of reflection at a boundary is dependent on the acoustic impedance of

the materials on either side of it, and on the angle of incidence of the ultrasound. The acoustic

impedance of a material, z, is given by,

z = p c,	 (1.1)

where p is the density and c is the phase velocity of sound in the material. In most tests used in
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industry, the transducer is normal to the structure and the reflection coefficient, R 12, from a

boundary between two media of impedance z 1 and z2 when the ultrasound is incident in

material 1 is given by (Brekhovskilth 1980),

z -z
12 - z 1 + z2
	 (1.2)

Hence, if there is a large difference in the acoustic impedance of the materials, the reflected

signal is large. Since air has a very low acoustic impedance relative to solids and liquids, it is

difficult to propagate ultrasonic energy from the transducer, through air, into the structure to be

tested. The transducer is therefore coupled to the structure via a medium which has an acoustic

impedance closer to that of the structure. The structure and the transducer are frequently

immersed in a water bath; the ultrasound then propagates across the water filled gap (typically

25 - 100 mm, depending on the transducer) into the testpiece. An alternative is to use a water jet

transducer in which the ultrasound propagates along a moving column of water (jet). Small

scale inspections, particularly in the field, are commonly done with hand-held contact

transducers, coupling being provided by a thin layer of gel between the transducer and the

structure. Some work at low ultrasonic frequencies has also been carried out using roller probes

in which the ultrasonic transducer is held inside a wheel, the sound being propagated into the

specimen via soft rubber tyre. However, this method is not satisfactory for the detailed

characterisation of defects (Stone and Clarke 1987). Serious problems can arise if the couplant

or some of other liquid such as water or fuel is allowed to penetrate a disbond. The presence of

the liquid reduces the reflection coefficient and the defect becomes more difficult to detect.

Since a defect such as disbond or void containing air or any other low density substance has a

very low acoustic impedance relative to the adhesive or adherend, a strong reflection will be

obtained. The amplitude of the signal transmitted through the bondline will therefore be

reduced.

The magnitude of the reflected echoes can be displayed with respect to time and be used to

indicate the presence of defects. A display of this type is commonly called an A-scan. B and C

scans are also commonly used to display the test results. In the B scan presentation, the vertical

axis is time, the presence of echoes being indicated by intensity variations. The horizontal axis

gives position information, so an image of cross section of the component is built up. If the

amplitude of a particular echo is monitored at each point on the surface of the work, a C-scan

can be produced. Measurements at each point are taken using a scanning mechanism which

produces a plan of the defects positions but gives no information about their depth.

If immersion testing is used, the amplitude of the echo received from a reflector plate placed
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below the bottom adherend is often monitored and used to produce a C-scan map. A

delamination whose plan dimensions exceed those of the ultrasonic beam will almost

completely remove this echo, while the presence of porosity will cause attenuation of the signal

due to scattering of the ultrasound by small gas bubbles. Examples of A, B and C scans can be

found in Guyott eta!. (1986).

Ultrasonic bondtesters

A number of bondtesters operating in the frequency range between 100 kHz and 1 MHz are

widely marketed. The Bondascope manufactured by NDT Instruments measures the magnitude

and phase of the ultrasonic impedance of a bonded structure, and displays the result as a 'flying

dot' on an oscilloscope screen Guyott et a!. (1986). Changes in the magnitude and phase of the

impedance can be related to the existence and depth of disbonds or delaminations, though small

voids and porosity cannot be detected. The Fokker Bond Tester Mk II uses spectroscopic

approach: it monitors frequency and amplitude changes in the first two modes of through-

thickness vibration of a system comprising a transducer coupled to the structure. Changes in

resonance frequency reveal the existence and depth of disbonds and delaminations. The

instrument can detect disbonds satisfactorily with any adhesive system, but it is not sensitive to

changes in the cohesive properties of modern, high-strength adhesives.

Sonic vibration

While ultrasonic methods are capable of detecting disbonds, voids and porosity, since the probe

has to be scanned over each point at which the structure must be inspected, they suffer from the

disadvantage of being slow, and the need to apply couplant is also a major drawback in many

circumstances.

Sonic vibration methods offer one means of avoiding the need to apply a coupling fluid. The

coin-tap test in which region of the structure to be tested is tapped with a coin, the operator

listening to the sound, is probably the best known of these techniques. It is found that defective

areas sound duller than good areas (Cawley and Adams 1988, Adams and Cawley 1989). It has

been shown that the difference between good and defective structures can be detected simply by

tapping the structure using a small hammer with a force transducer incorporated in its head, and

monitoring the force input to the structure during the tap. This has led to the development of an

instrument which carries out the test automatically and gives an objective measure of integrity of

the structure.

The mechanical impedance method (Cawley 1987) can also be used for the detection of
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delaminations in composite materials and disbonds in adhesive joints. The point impedance at

the site of a disbond or delamination is lower than in good areas of structure so impedance

measurements can be used to detect the defects. The impedance change produced by a given

size of defect reduces as the depth of the defect increases, so the sensitivity of the test is highest

for defects close to the surface. This is also true of the coin-tap test.

The major application area of these techniques is in the field, where the use of coupling fluids is

particularly inconvenient, and where it is frequently only necessary to detect quite large defects.

They are also useful for the inspection of thin-skinned honeycomb structures in which the skins

are porous, which means that coupling fluids cannot be used. Further details of these and other

sonic vibration techniques can be found in Cawley (1990).

Thermography

Passive thermography is one method which shows considerable promise for the quick

inspection of large areas of structure. It involves the measurement of the surface temperature of

the structure after the application of a heating transient, usually with an infra-red camera, and

anomalies in the temperature distribution reveal the presence of defects. The performance of the

method is strongly dependent on the heat source used, a flash gun generally being the most

suitable.

It has been shown that the feasibility of the method is greatly enhanced by the use of a video

recorder to store the rapidly changing temperature pattern after the structure surface is heated

and that this makeçit possible to detect defects in conducting materials whose effect on the

temperature distribution is very short-lived. The method can be employed with the heat source

and camera on the same side of the structure (pulse-echo) and on opposite sides (through-

transmission). The through-transmission method can detect deeper defects than the pulse-echo

technique, but for defects close to the surface, pulse-echo is superior. Further details of the

method can be found in Reynolds (1984) and Reynolds (1988).

Other methods

X radiography is not widely applied to the NDT of adhesive joints. This is partly because

defects such as disbonds tend to be normal to the X-ray beam, whereas defects are easiest to

detect if they are parallel to the beam. Also, if the adherends are metallic, the detection of

anomalies in the adhesive is extremely difficult since the absorbtion in the adherend is high, and

any lack of adhesive makes a negligible difference to the overall absorption.
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Unlike X-rays, neutrons are more strongly absorbed by adhesive than by metals, so neutron

radiography could be used to detect disbonds in joints with metal adherends. Neutron

radiography should also be very sensitive to the presence of moisture in the joint, and so could

possibly be used to monitor the progress of environmental degradation. However, as Bar-

Cohen (1986) points out, neutron sources are inconvenient for use in large scale NDT.

Like thermorgaphy, optical holography and shearography offer the possibility of inspecting

large areas of structure quickly for the presence of disbonds. They detect anomalies in the

displacement or, in the case of shearography, strain patterns on the structure when it is stressed

by vibration, static loading or thermal transients. If the optical system used has a large field of

view, it is possible to inspect an extensive area in one test, so the method can be used for the

quick inspection of large structures. However, the equipment costs are high and, unless a pulse

system is used, the structure must generally be mounted on a table which is isolated from

extraneous vibration. Recent work on holography is reported by Lokberg and Malmo (1988),

and further discussion of shearography can be found in Hung (1989).

1.3.2 Cohesive strength

If the adherend surface preparation has been carried out correctly, the strength of a joint is

generally controlled by the cohesive properties of the adhesive layer. Therefore, although

problems with cohesive properties are less common than those associated with the

adhesive/adherend interface, it would be desirable to be able to measure the cohesive properties

of the adhesive nondestructively. Also, if ultrasonic reflection coefficient measurements are

used to monitor the adhesive/adherend interface, the measured reflection amplitudes will depend

on the acoustic properties of the adhesive, so it is important that these are known.

Some progress is being made on the development of tests for cohesive properties and one

commercially available instrument, the Fokker Bond Tester Mk II does claim to be able to detect

poor cohesion (Schliekelmann 1975). The device measures the frequencies of the first two

modes of the transducer coupled to the joint. However, recent work (Guyott er a!. 1987) has

shown that it is not sensitive to variations in the cohesive properties of modern high strength

adhesives, though it can still be used to detect disbonds.

Research has continued and subsequent work has used ultrasonic spectroscopy to measure the

frequencies of the through-thickness modes of the joint itself, in order to monitor the quality of

cohesion. A detailed analysis conducted by Guyott and Cawley (1988), and Cawley and

Hodson (1988) suggested that it is possible to calculate values of adhesive modulus and

thickness from measurements of the resonant frequencies. However, recent work conducted by
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Dewen (1992), showed that this approach is insufficiently robust for industrial applications.

Another idea which has been recently investigated by Dewen (1992) is to use the time-of-flight

in the adhesive layer and the reflection coefficient at the adherend/adhesive interface to infer the

elastic modulus and thickness of the bond line. Dewen (1992) showed that this technique is

more robust than ultrasonic spectroscopy and that the longitudinal wave velocity in the adhesive

can be determined with a maximum error of 6% and the bondline thickness to within

micrometer accuracy.

Since the cohesive strength of the adhesive is a function of the degree of cross linking of the

polymer during cure, and this mechanism also controls the modulus, there is a good correlation

between adhesive modulus and cohesive strength. The cohesive strength of a joint is also

weaker function of the thickness of the adhesive layer. It seems therefore that monitoring the

adhesive modulus and thickness would provide a valuable means of checking the cohesive

strength of a joint.

Another possible technique for monitoring the cohesive properties of a joint is the measurement

of the dielectric relaxation characteristics of the adhesive. Organic molecules containing

molecular dipoles are capable of exhibiting a frequency and temperature dependent dielectric

permittivity. As the cure of an adhesive proceeds, the degree to which dipoles can reorient

themselves will firstly be influenced by the increase in viscosity which accompanies the chain

extension process, then by the suppression of bulk motion by the process of gelation, and

fmally by an increase in the glass transition temperature.

Matiss and Shtrauss (1988) have shown that relaxation spectrum measurements at very low

frequencies between 1 mHz and 1 Hz are very effective for monitoring the degree of cure of an

epoxy resin, and they have worked on a measurement system which only requires access to one

side of a joint. Work on this subject is also being done by a group headed by Pethrick (Jeffrey

et a!. 1988) who have shown that dielectric measurements are very sensitive to the moisture

content of the adhesive. This suggests that the technique may provide a means of monitoring

the progress of environmental attack which, although its chief effect is to reduce the strength of

the adhesive/ adherend interface, also leads to hydration of the adhesive layer.

1.4 Testing for poor adhesion

Currently, there is no satisfactory nondestructive technique to test for adhesion strength in

bonded joints. In order to secure sufficient quality of adhesion strength in bonded structures,
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manufacturers implement costly and cumbersome process control procedures, frequently

involving destructive testing of samples taken from production lines. Despite substantial

research effort and many theories being proposed, the adhesion between two surfaces is not

well understood (Adams and Wake 1984, Stone 1986, Kinloch 1987, Light and Kwun 1989).

Therefore NDT can at best be used to attempt to determine whether a tested interface has the

same features as a reference one, which is assumed to be satisfactozy.

Two basic approaches have been investigated for the ultrasonic determination of the interfacial

properties in adhesive joints, namely modal solutions and reflection coefficient techniques.

Both approaches have been attempted to make predictions of response of the joint assuming a

certain model of the adhesive/adherend interface. Different interfacial models which have been

used are described below.

1.4.1 Theoretical models of the adherend/adhesive interface

For theoretical purposes, the notion of an interface layer with its own acoustic properties and

thickness is usually introduced. This means that the ultrasonic response from the

adherend/interface layer/adhesive system rather than the simple adherend/adhesive system is

analysed. The thickness of the interface layer is typically of the order of 1 lIm and depends on

the surface characteristics like roughness, the presence of contaminants and the type of oxide on

the surface of the adherend. However, the wavelength of the ultrasonic waves used currently in

nondestructive testing are at least one hundred times larger than the thickness of the interface

layer. Tauersall (1973) assumed that the thickness of such an interface layer is therefore

negligible and its elastic properties can be modelled as a spring. Later on a number of

researchers studying different thin layer or interfacial problems arrived at essentially the same

spring model as Tattersall did in 1973, and were able to relate the stiffness of the interface to

different features of the measured system. Nowadays, the spring model is the most commonly

used approximation of a thin layer. Different cases leading to the spring model are listed below.

• A thin solid layer can sometimes be modelled using spring modeL The normal and transverse

stiffness of the layer can be related to the thickness of the layer and its elastic constants. A

more detailed discussion of this is given in chapter 4 of this thesis.

• A thin liquid layer can be modelled in a similar manner as the thin solid layer. In the

transverse direction the behaviour of such a layer can be modelled by 'transverse slip' or

'viscous slip' depending on the layer's thickness, the viscosity of the liquid and the

frequency of excitation (Kuhn and Lutsch 1961, Schoenberg 1980, Rokhlin and Marom

1986), while the stiffness in the normal direction can be calculated in the same manner as in
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the case of a solid layer.

• When two surfaces are in intimate contact with each other and there is no viscous coupling

between them then a dry contact takes place. Transmission of forces across the interface is

achieved by the large number of small contacts distributed randomly in the plane of the

interface. The stiffness of the interface can be related to the statistical descriptions of the

surfaces and the mechanical properties of the materials in contact (Haines 1980). Haines'

spring model has been used by a number of researchers investigating the reflection

coefficient from contacting surfaces (Arakawa 1983, Krolikowski et al. 1989, Nagy 1990).

• When the adhesive/adherend interface is not perfect and an array of small debonded areas,

which cannot be resolved individually by an ultrasonic transducer, is formed then a partial

bond takes place. This bond has some, although somewhat reduced, strength. Certain

statistical properties of the partial bond like the size and density of the debonded areas can be

related to the interface stiffness (Angel and Achenbach 1985, Achenbach and Kitahara 1986,

Sotiropoulos and Achenbach 1988, Nagy 1990)

• A kissing bond can occur as a result of plastic contact between the surfaces. In such a case

the interface has no strength apart from some "sticking" effect at the surfaces (Nagy 1990).

This can take place in diffusion bonded joints where the materials are pressed together at

elevated temperatures. In adhesively bonded joints this may possibly occur if, for example,

the adhesive is bonded to a very thin layer of a mould release agent deposited on the surface

of the adherend. If the mechanical properties of the contacting materials and a statistical

description of the mating surfaces (like mean separation) are known then the stiffness of the

interface can be calculated using Haines' (1980) approach.

Another, more complicated model of the interface, is to consider it as a finite thickness

intermediate isotropic layer with its own density, longitudinal and shear velocity and thickness

(Alers 1976, Nagy and Adler 1989 (b), Dale and Rose 1990). Recently Wang and Rokhlin

(1990) measured properties of thick layer of PAA oxide and employed an anisotropic layer

model to correlate the experiments with theory.

1.4.2 Different testing strategies

From the conceptual point of view, the adhesive bond is usually considered as a five layered

plate, the adherend/interface/adhesive/ interface/adherend system, where each of the layers has

its own acoustic properties. A successful testing technique should be capable of monitoring

certain changes in the elastic properties of either or both interfacial layers in a joint. Two

different testing approaches have been proposed in the literature. The first one is the modal
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approach using Leaky Lamb Waves (LLW), guided waves (trapped modes) in the adhesive

layer, or interface waves to determine the boundary conditions across the adhesive and

adherend. The second approach is to monitor the reflectivity of ultrasonic bulk waves from

adherend/adhesive interface, and is known as the reflection coefficient technique.

Modal approach

Leaky Lamb Waves (LLW) are waves propagating along a plate (see fig. 1.1(a)). If the plate is

an adhesive joint then the velocity and the wavelength of Leaky Lamb Waves depend on the

mechanical properties of the adhesive and adherends and the boundary conditions between

them. For theoretical purposes the adhesive joint is usually modelled as a three layered plate, an

adherend/adhesive/adherend system with 'imperfect' boundary conditions introduced between

one or both adherend/adhesive interfaces. In experimental investigations the Leaky Lamb

Waves are usually excited and received by ultrasonic transducers operating in a pitch-catch

mode underwater whose angles of incidence with respect to a tested plate can be accurately

adjusted. Theoretical predictions of the frequencies and the velocities at which the Leaky Lamb

Waves can propagate in a given adhesive joint are often displayed in the form of dispersion

curves and compared with experiments. In experimental investigations the Leaky Lamb Waves

are usually excited and received by ultrasonic transducers operating with immersion coupling in

a pitch-catch mode, whose angles of incidence with respect to a tested plate can be accurately

adjusted. Several researchers have tried to use the LLW technique for nondestructive evaluation

of adhesive joints and particularly to monitor their interfacial properties but their findings are

preliminary.

One of the recent publications from the group in the University of Paris headed by Quentin and

de Billy (Leomy et a!. 1989) used LLW technique on samples of adhesively bonded

duraluminium plates to brass substrates and brass plates to duraluminium substrates.

Comparison between the measurements and theoretically generated dispersion curves revealed

that most of the experimental plots were not predicted by the elastic theory used, and it was

concluded that attenuation should be included in the modeL In another investigation (Guy 1992)

steel-to-steel adhesive joints with different surface preparations, including oil contamination,

were considered. Theoretical model predictions and experimental investigations led the

researchers to conclude that the LLW technique is only very weakly sensitive to different

interfacial conditions between steel and epoxy.

Rokhlin (Rokhlin et a!. 1990) used the LLW technique to monitor the degree of cure of two

very thin epoxy films in a five-layer system consisting of aluminium/epoxy/plastic/epoxy!

aluminium. During the curing process, the boundary conditions between the aluminium
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adherends and the plastic layer changed from 'weak' to 'good'. Comparison between

theoretical predictions and the measurements was essentially qualitative and some results were

left unexplained. However, the work demonstrated good sensitivity of the LLW technique to

adhesion type imperfections.

Guided waves (trapped modes) are the type of waves which propagate along the adhesive layer,

and unlike the Leaky Lamb Waves, do not extend over the entire thickness of an adhesive joint

(see fig. 1.1(b)). The adhesive layer acts here as a waveguide and the energy is concentrated

almost entirely in the bondline (Alers and Thompson 1976). True guided modes are not coupled

to any of the bulk waves in the surrounding media; they are therefore less suitable for NDT

applications since they are difficult to excite and receive through the adherend. One possibility

is to use Rayleigh waves propagating along the surface of the adherend plates, which are mode-

converted into guided interface waves when going through the joint (see fig. 1.2). A few

preliminary studies, both theoretical and experimental, have been conducted on this subject

showing that the guided waves are much more sensitive to both adhesive and cohesive type

defects than Lamb modes (Nagy and Adler 1989 (b), Nagy eta!. 1990, Nagy and Adler 1991).

Nagy and Adler (1989 (a)) used a Leaky Guided Wave technique to monitor changes in the

interfacial properties in adhesive joints caused by the presence of a thin layer of mould release

agent applied to the adherend prior to bonding. One of the main conclusions of the paper is that

the presence of the mould release affects the amplitudes of the Lamb modes rather than the

frequencies at which they propagate.

Interface waves propagate along the adhesive/adherend interface (see fig. 1.1(c)). The

mechanical energy of these waves is almost entirely concentrated in the vicinity of the

adhesive/adherend interface and the properties of the interface waves are dependent on the

mechanical properties in the interfacial region. This makes them potentially well suited for

monitoring the interfacial conditions between the adherend and adhesive. Despite its apparent

attractions, there is only a handful of reports on the application of interface waves to the

adhesion problem (Rokhlin a a!. 1981, Rokhlin 1982, Pilarski 1985, Nagy and Adler 1989

(b)). Application of the technique to the surface contact characterisation between two solids has

been reported by Murty and Kumai (1991). In all the reported investigations known to the

author, the interface waves were .ed using the mode-conversion technique from the Rayleigh

wave to the interface wave, described above in the context of guided waves applications.

Reflection coefficient approach

In the reflection coefficient method the reflectivity of bulk waves, (longitudinal or shear), at the
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adherend/adhesive interface is measured. Measurements can be conducted at normal and

oblique incidence with respect to the monitored interface as well as at different frequencies of

excitation. The results of the measurements are then related to the mechanical properties of the

interfacial layer.

Tattersall (1973) assumed a simple one-dimensional spring model for the interface between two

solids and used this to study the reflection coefficients at normal incidence between an

aluminium block and low density polyethylene cast on the aluminium face. Using the spring

model of the interface, Tattersaliderived an expression for the reflection coefficient,

z 1 - z2 + i(z1z2/k)
(1.3)R12 =

z 1 + z2 + iO)(z1z2/k)

where z 1 and z2 are the acoustic impedances of medium 1 and medium 2, defined by eqn 1.1,

and k is the stiffness of the interface. The model proposed by Tattersalitherefore predicts that

the reflection coefficient from an imperfect interface will be frequency dependent. Equation 1.3

can be considered as an extension of the standard textbook expression of the reflection

coefficient from a flat interface between two materials without a spring in between (see eqn

1.2), which is frequency independent. Tauersaltconcluded that using the spring model it is

possible to account for presence of gaseous contamination at the interface. Because of its

simplicity the spring model has been used in a number of applications where the concept of

'thin layer' or 'thin imperfection' could be applied (see section 1.4 of this thesis for more

details).

Alers (1976) considered three different models of interfaces, an isotropic layer of finite

thickness, a diffuse layer and the spring model, and performed normal incidence reflectivity

measurements from bonded interfaces using Plexiglas (Lucite) adherends. Two different types

of bonds were investigated in his work. The first of them was an 'adhesive' type of bond

which was created by applying solvent on the surfaces of the adherends before pushing the

adherends together. The second set of joints, a 'thermal' type, were created by pushing the

Plexiglas adherends together at elevated temperature. The normal incidence longitudinal

reflection coefficient was measured and then destructive tests were carried out in order to find

some relationship between the reflection coefficient and strength for both 'thermal' and

'adhesive' types of the interfaces. Alers was not able to correlate the ultrasonic reflectivity from

the interfaces with their strength and concluded that better understanding of wave interaction

with imperfect boundaries is required. He also suggested that some alternative technique is

needed to achieve the required sensitivity to interfacial integrity.
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Rokhlin and Marom (1986) proposed a novel technique, based on an idea in the paper by KUhn

and Lutsch (1961), to monitor the degree of cure in adhesives. They measured the longitudinal

wave oblique incidence reflection coefficient from thin adhesive films between two steel plates

and between steel and Plexiglas plates. They showed that during the curing cycle, thin adhesive

layers undergo changes from 'slip' to 'rigid' conditions. The experimentally determined

reflection coefficient curves showed very good agreement with theoretical predictions and the

researchers concluded that the oblique incidence method can be used to monitor changes from

the 'slip' to 'rigid' conditions across thin layers and can be used for cure-monitoring of thin

adhesive layers.

Pilarski and Rose (1988) progressed the ultrasonic oblique incidence approach, proposed by

Rokhlin and Marom (1986), and used it as an alternative to the normal incidence technique in

the evaluation of aluminium-to-aluminium adhesive joints. The experimental evidence gathered

thus far suggested that the normal incidence was not sensitive enough to be used successfully

(Thompson and Thompson 1988). The normal incidence method relies on changes in the

interface stiffness solely in the direction normal to the interface. However, if the interfacial

imperfections affected the transverse stiffness of the boundary then the oblique incidence

method would have much higher sensitivity then the normal incidence tests. A two dimensional

model of the interface was proposed, with normal and tangential stiffnesses. A full set of

reflection coefficients (longitudinal-longitudinal, longitudinal-shear, shear-longitudinal and

shear-shear (see fig. 1.3)) from the aluminium/epoxy interface was theoretically calculated

assuming 'rigid' and 'slip' boundary conditions between the adhesive and the adherend. Tests

on adhesive bonds with two different surface preparations were conducted which indicated

good sensitivity of the oblique incidence method in practice. Pilarski and Rose concluded that

the oblique incidence method opens up a new direction in the search for a robust NDT

technique testing for interfacial strength. Theoretical and experimental studies on the oblique

incidence technique were presented by Pilarski and Rose in several papers (Pilarski 1985,

Pilarski et a!. 1987, Pilarski er a!. 1990, Rose et a!. 1990 (a), (b)); however they are all of a

preliminary nature. Theoretical investigations were mostly based on the 'rigid' and 'slip'

boundary interface model which represent two extreme cases of 'good' and 'weak' adhesive

joint and are very seldom, if at all, found in reality. The experimental investigations conducted

by Pilarski and Rose so far have not been systematic enough to provide a firm basis for the

acceptance of the oblique incidence reflection coefficient as a better technique for the

determination of interfacial properties in adhesive joints.

1.4.3 Conclusions

Despite substantial efforts made for over twenty years, the problem of testing for poor adhesion



Chapter 1	 15

Bakgrcmd

has not been solved. It has not been definitely determined whether or not an ultrasonic

technique can be used for the determination of interfacial weakness in adhesive bonds. The

most promising techniques are the guided wave (trapped mode), the interface wave and the

oblique incidence refection coefficient techniques. However, the studies conducted and

published on these three techniques are of a preliminary nature and further research is needed to

fully asses their applicability. This thesis considers the reflection coefficient method.

1.5 Problem summary

In summary, the problem is to determine the mechanical boundary conditions between the

layers of an adhesive joint, by sending longitudinal waves from a liquid into the joint and

receiving back the resulting reflections (see fig. 1.3). It is assumed that the adhesive joint

consists of two flat layers of metal joined by a flat layer of epoxy resin.

The main anticipated difficulties are as follows:

a. The thickness of the aluminium/epoxy interface layer is usually of the order of 1 I.Lm.

This makes it impossible to determine the mechanical properties of the layer by the

conventional ultrasonic techniques which are used for material evaluation because the

wavelength of the waves is much longer than the interface layer thickness.

b. In order to increase the impact toughness of adhesive joints, the adhesive is usually

modified (for example with rubber) so that it exhibits viscoelastic properties. This

means that the reflection coefficient from the interface can be affected by the

viscoelastic behaviour of the adhesive. This behaviour is, in general, frequency

dependent.

c. The transducers used to excite the plates and to receive the reflected field are of finite

size. This raises questions about the applicability of the infinite plane wave theory to

realistic cases.

1.6 Outline of the thesis

The aim of the research reported here was to conduct further detailed studies of all stages of the

reflection coefficient technique. This research includes the theoretical modelling of the adhesive

and adherend layers and the interfaces between them, sensitivity studies to determine the most
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useful practical testing arrangements, the construction and application of an appropriate

measurement rig, and experimental investigations to quantitatively validate the theoretical

models used.

In chapter 2 the concept of a viscoelastic medium is introduced by assuming that any

viscoelastic material can be fully described by its density and another four independent

variables, two of them being Lamé's constants and the remaining two characterising the

damping properties of the material. A wave equation of motion is derived on the basis of this

assumption, and it is shown that harmonic plane waves satisfy the equation. The reflection and

transmission coefficients are defined in terms of these harmonic plane waves.

Having established the equation for infmite plane waves the theory is progressed to the realistic

field generated by fmite sized transducers. This is achieved by decomposing the field into

harmonic infinite plane waves whose reflection coefficients are readily found. Subsequently

this process is also used to determine the field received by a finite sized transducer by the

synthesis of the harmonic infinite plane wave solutions.

In chapter 3 the theory of plane wave reflection and transmission from multilayered viscoelastic

plates is given. This theory makes it possible to calculate reflection coefficients of any

multilayered viscoelastic plate with any boundary conditions between the layers. The only

limitation is that the boundary conditions have to be linear.

In chapter 4 a theoretical study of ultrasonic reflectivity from thin solid and liquid layers is

presented and a thin layer approximation is derived. Parametric studies of reflection coefficients

at normal and oblique incidences are conducted and compared with the spring model and the

thin layer approximation.

In chapter 5 the oblique incidence reflection coefficient testing rig constructed for the purposes

of this thesis is presented. Ultrasonic reflectivity measurements from single-layered and multi-

layered systems are compared with theoretical predictions to validate the theory derived in

chapters 2 and 3. The measurement error of the oblique incidence method is estimated and the

applicability of the plane wave theory and the finite transducer theory is discussed.

In chapter 6 the monitoring of interfacial conditions in a glass/epoxy joint at the normal and

oblique angles of incidences using longitudinal and shear waves is performed. The computer

model, derived and validated in this thesis, was used to fmd the best testing strategy for the

interfacial weakness determination. Oblique incidence tests were then conducted at these

selected angles.
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In chapter 7 an attempt to monitor interfacial conditions of the aluminium/epoxy joints is

presented. Using the theoretical models and experimental tools developed in previous chapters

the applicability of the oblique incidence method to the adhesion problem in real aluminium-to-

aluminium joints is discussed.

Chapter 8 presents main conclusions of the thesis and contains recommendations and

suggestions for future work.
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Fig 1.1 Different plate waves used for the adhesion testing

(A) Leaky Lamb Waves (LLW)

(B) Guided waves (trapped modes)

(C) Interface waves
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Fig 1.2 Generation of guided waves in an adhesive joint using
the mode-conversion phenomenon.
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Fig 1.3 Oblique incidence reflection coefficient method.
FF front face reflection
LL longitudinal-longitudinal reflection
LS longitudinal-shear reflection
SL shear-longitudinal relection
SS shear-shear reflection
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CHAPTER 2

The reflection coefficient from the interface between two
semi-infinite viscoelastic media

2.1 Introduction

Chapter 2 is concerned with the reflection and transmission of acoustic waves at a single

interface between two semi-infinite viscoelastic media. The chapter is divided into four

sections, the first presenting the harmonic plane wave concept, the second applying the plane

wave theory to solve a single interface reflection coefficient problem, the third one giving a

solution method for the reflection and transmission fields generated by transducers of finite

dimensions. The final section summarises the main points made in the chapter.

In section 2.2 the concept of harmonic longitudinal and shear plane waves is presented as a

solution of a wave equation in an unbounded viscoelastic medium. The solution follows a

standard procedure for a wave equation. Firstly the definition of strain and stress is given. Then

the governing equation for viscoelastic media, relating the stress field to the strain field, is

obtained under the assumption that any viscoelastic medium can be comprehensively

characterised by its density and another four independent constants, two of them being Lamé's

constants and the remaining two characterising the damping properties of the medium. In order

to relate the stress field to the displacement field, the equation of motion for an infinitesimally

small volume of the medium is given. Combining the equation of motion with the governing

equation and the definition of strain the wave equation in terms of the displacement field is

derived.

To solve the equation the Helmholtz representation of the displacement field is then applied

which conveniently decouples the wave equation into two independent wave equations, the

solutions of which yield two harmonic plane waves: a longitudinal plane wave and a shear

plane wave in terms of the wave potential fields. The wave potential fields are related to the

displacement field by the Helmholtz representation and therefore the wave equation solutions

can be obtained in terms of the displacement field.

Having done the necessary calculations it is found that the longitudinal plane wave field

consists solely of the harmonic displacement in the direction of propagation of the wave, and
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the shear wave causes the particles to move solely in the direction perpendicular to the direction

of propagation of the wave. This statement applies only to propagating (homogeneous)

longitudinal and shear waves which is the case when an infmite medium is considered.

Sometimes it is important to calculate the stress at a given point in the medium. The constitutive

equation, relating the stress field to the strain field, makes it possible to calculate the stress

tensor components due to the longitudinal and shear plane waves.

Section 2.3 deals with the generation of the reflected and transmitted harmonic plane waves at a

plane boundary between two viscoelastic materials. At the beginning of section the Snell's law

equation for viscoelastic media is given, which shows that the angular frequency of the waves

and their wavenumber components parallel to the interface must be preserved (ie they are

invariant in transmission and reflection from a plane interface). It is shown in this section that

these two invariants reduce the maximum number of the reflected and transmitted waves to

four: two reflected waves and two transmitted waves. Therefore the stress-displacement field

due to the four harmonic waves is calculated as a superposition of the stress-displacement fields

due to each of the four plane harmonic waves. This equation, relating the stress-displacement

field to the four harmonic wave amplitudes, describes a general form of the reflected or

transmitted field between any pair of viscoelastic media separated by a plane boundary. If the

relationship between the stress-displacement field on one side of the boundary and the stress-

displacement field on the other side of the boundary is known (eg in the form of a stiffness

matrix), then it is possible to calculate the amplitudes of the reflected or transmitted harmonic

plane waves, that is to calculate the reflection and transmission coefficients of the system. The

last subsection of section 2.3 deals with the boundary stiffness matrix and completes the

derivations of the equations relating the stress-displacement field across the plane interface.

In section 2.4 the problem of the reflection and transmission of the field at a single interface

generated by a finite transducer in an inviscid fluid is presented. It is possible to obtain an exact

solution of the field generated by a fmite transducer using Huyghens principle ie by summation

of spherical waves from the face of the transducer. However, this will lead to cumbersome

equations when deriving the reflected and transmitted field at plane interfaces. It is therefore

more convenient to form the radiated field as a superposition of harmonic plane waves as it is

possible to obtain solutions for the reflection and transmission coefficients from plane

boundaries in a relatively straightforward manner.

Section 2.5 is the conclusion section and repeats the most important fmdings of this chapter in a

concise form.
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2.2 Plane wave in an infinite viscoelastic medium

2.2.1 Plane wave as a solution of the wave equation

In a viscoelastic medium the stress-strain equations can be written as (see for example Love

1944, Becker and Richardson 1970),

O.j =

	 A,'	 2j' a	
(2.1)

where is stress, is strain, A, and i are the Lamé's constants, A.' and t' characterise

attenuation of the medium, 0 is the frequency, and is the Kronecker delta i,j=1,...,3. The

equation of motion is,

a
Yjj	 pu1,	(2.2)

where p is the density of the medium and x3 , j=1,...,3 is the Cartesian coordinate system and

uj, i=1,...,3 are the components of the displacement from the position of equilibrium. Strain is

defined in terms of displacement as,

e= 
ia

	

	
(2.3)

1

Substituting (2.2) and (2.3) into (2.1) we can obtain the equation of motion in terms of the

displacement ii.

p.' 2a_ A,'+f
+ (A, + p.) V (V.ti) + - V u +	 V (V4 ) = P ii	 (2.4)

0)	 0)

Using the Helmholtz representation (see for example Malvern 1969) we can express an

arbitrary continuous differentiable field as a superposition of an irrotational (potential) field L

and a rotational (solenoidal) field S. This can be expressed as, ii = L+S, where E=V4) and
=Vxir. The scalar function 4) and the vector function are called the wave potentials.

Equation (2.4) then becomes a set of two uncoupled equations for 4) and 1,

[(A, 
+ 2p.) + X'+2p'	

V71) = p	 0'
0)

[p.+--]V2i= a-
(oat	 p'I'.

Let us assume solutions,
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io)(.x/a - t)
4,t) = 4(co) e

and,

iO).X/13 - t)
frCx ,t) =	 e

where N is a complex vector, • is the dot product symbol, and a and 13 are complex. The

operators for these solutions are,

a.
=-1O);	 =-co2;

a	 2	 (022
=--N ; —j = -( -) N; where c=a or

(2.9)

(2.10)

v2= 
( a2 a2 a2

ax +
	 +	 = -() • f; where c = a or c =13.

Assuming these solutions equations (2.5) and (2.6) become,

+ 2p) +	 (-in))] [()2]	
q = —po)24),

(0	 a

[.t +-- (-ico)] [(0))2] 
,4.r i = -pco2lp.

(2.11)

(2.12)

(2.13)

These equations can be simplified to,

[(A. + 2j.t) - i(A.'+2.t')] N.N = pa2,	 (2.14)

= p32.	 (2.15)

Equations (2.14) and (2.15) are equivalent to equation (2.4) with the displacement field split

into the rotational S and irrotational L displacements and assuming that the motion is harmonic.

To simplify the two equations we can normalise the complex vector N defining it as being of

unit amplitude,

N.N 1 .	 (2.16)
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Equations (2.14) and (2.15) become,

a2 
= (?+2g.t) - i(?'+2p.')	

(2.17)
p

= J.t -iii'.	 (2.18)
p

Thus equations (2.7) and (2.8) are solutions of equations (2.5) and (2.6) provided that

equations (2.16), (2.17) and (2.18) are satisfied.

The equations for a totally elastic solid can be obtained by setting A'=O and f =0, ie by

removing the viscous terms from eqn (2.1). The equations for a viscous fluid can be obtained

by removing the shear stiffness (setting li.=0), and multiplying X' and j.t' by o. In this case eqn

(2.1) becomes the Navier-Stokes equation. The inviscid (Newtonian) fluid model is obtained
by setting p.=O, ?..'=O and .i'=0.

2.2.2 Displacement field for longitudinal and shear plane waves

Let us, for convenience, choose a Cartesian coordinate system so that N3=O. The wave

potentials, given by equations (2.7) and (2.8), can be therefore expressed in terms of xi and X2

coordinates only, reducing the case to the two-dimensional plane strain problem, 	 = 0.

Displacement field due to a wave potential 4) of unit amplitude

The displacement field due to the wave potential 4) is,

a a
= V(t) = I	 ,	 '0) 4).

Substituting eqn (2.7) into (2.19) we have,

L1	
N1

=	 =1(0— 4)(co),
a

L2 =-=kD- 4)(co),

(2.19)

(2.20)

(2.21)

L3=O.	 (2.22)

Therefore we have,



Substituting eqn (2.24) into (2.25) we have,

Si	
N2

=	 =1(0— lIJ(Tx,t),

N
=	 =-ico— lqcCx,t),
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i:	 = TN1	 + N2x2/a - t)

u2J	 N2J a
(2.23)

Equation (2.23) describes the displacement field due to a wave potential 4 of unit, real

amplitude.

Displacement field due to a wave potential of unit amplitude

The rotational wave potential can be expressed as,

ico(Nix i/f3 + N2x2/13 - t)
41=13\jJ((D)e (2.24)

where T3 denotes the unit vector along the x 3 coordinate. The displacement field is,

11	 1	 13

a a a

00W

=1	 - (2.25)

(2.26)

(2.27)

S 3 =0.	 (2.28)

Therefore we have,

uil = ,f 
N4 (j) ico(N1 x /l3 + N2 x2/13 - t)

U2J	 -N1J I

(2.29)

Equation (2.29) describes the displacement field due to a wave potential 	 of unit, real
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amplitude.

Definition of longitudinal and shear waves in terms of the displacement field

From now on we will assume that the longitudinal and shear harmonic plane waves are given in

terms of the displacement field as,

- 1u11 - Nil eX1a + N2 x2/a - t)
L=

U2J

T"1 TN2	 + N2x2/13 - t)

u2J	 -N1J

(2.30)

(2.31)

in)
Comparing eqn (2.30) and (2.31) with (2.23) and (2.29) it can be seen that the terms - and
in)	 CX

have been dropped out. This has been done purely for convenience. Formally, we could

assume appropriate wave potentials (for example, assuming 4)newCX,t) = - 4,t) to arrive at

the displacement fields given by equations (2.30) and (2.31).

Attenuation and phase velocity of a plane wave

Let us take a longitudinal wave. Its displacement field can be expressed as,

- ico(N.x/a - t)
ü(i,t) = Ne

Sometimes it is convenient to describe plane waves in a form,

i(k.i - ot)
ii(Lt) = Ne

where,

=oN/a,

(2.32)

(2.33)

(2.34)

is known as a wavenumber and describes the spatial properties of a harmonic plane wave of

angular frequency w; k is a complex vector which can be expressed as a sum of its real and

imaginary parts,

k = kre + ikim.	 (2.35)

Now, eqn (2.32) becomes,



-	 0)
ci = -

ikrei

(2.41)

Chapter 2	 28

The reflection coefficient from the interface between two semi-infinite viscoelastic media

- -	 - 1(kreX - Q)t) kjmX
u(x,t) = Ne	 e

The phase of the wave is defined by the term,

q'Cx,t) = kreX - COt,

(2.36)

(2.37)

kim'X
and its amplitude by the term e 	 . A wavefront of the wave is defined as a surface in

space at which the displacement field assumes the same phase at a given instant, t=t 0. From eqn
(2.37) we have, Po = kre'i -COt0, which gives,

Ikrel 1I cos(0) =	 + O)t0 = const.	 (2.38)

The angle 0 is the angle between vectors kre and i, as shown in fig. 2.1.

From eqn (2.38) it can be seen that the wavefront of the plane wave is a plane perpendicular to

the real part of the wavenumber. Equation (2.37) shows that the planes of constant phase

change their spatial position with time. We can therefore lock on to a given wavefront and

follow it in time. The velocity at which we would have to move in space in order to follow this

wavefront is defined as the phase velocity. By eqn (2.38) the position of a given wavefront is,

kreX =	 + (Ut,	 (2.39)

which, after differentiation with respect to time gives,

kre' = Ikrel iëI cos(0) =	 (2.40)

where the phase velocity vectorë = i, and 0 is the angle between ë and kre. If the phase

velocity is defined as a vector perpendicular to the surface of constant phase, then the phase

velocity can be obtained without ambiguity as a vector parallel to kre, and eqn (2.40) becomes,

Ikrel II = o, which, using eqn (2.34), gives the expression for the magnitude of the phase

velocity as,

kimSX
The spatial variation of the field amplitude is defined by the term e 	 of eqn (2.36).

Therefore the planes of constant amplitude are perpendicular to kim and the gradient of the

amplitude is parallel to k rn
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If a plane wave propagates in a perfectly elastic medium then either the wave amplitude is the

same everywhere in the medium, or the amplitude of the wave is exponentially decaying, planes

of constant phases and planes of constant amplitudes of the wave being perpendicular to each

other. In other words, either kim vanishes or vectors k im and kre are mutually perpendicular.

To show this, consider the square of the wavenumber. From eqn (2.35) we have,

k2= 
2 

(kre + ik j m)2 = k k + 2i krekim
	 (2.42)

Equation (2.34) gives,

k2= (.)2 (because N.N El, eqn (2.16)).	 (2.43)
a

If the medium is elastic then, from eqn (2.17), a is real and, consequently, k2 takes on a real

positive value. As the imaginary part of k2 is zero then, from eqn (2.42), the dot product of the

vectors kre and kim is zero. This means that either kjm = (0) or kre and kim are perpendicular

to each other.

It may be readily shown that shear wave attenuation and phase velocity follow the same form.

2.2.3 Stress field due to longitudinal and shear waves in plane strain

Having defined the longitudinal and shear wave displacement fields by eqn (2.30) and (2.31), it

is now possible to calculate the stress fields. Stresses have been defined in terms of strains in

eqn (2.1) as,

=
	 2p.' a	

(2.44)

For a harmonic process = -ko, so,

= &jj ( - i?.') c	 + 2( i— iii.') c.	 (2.45)

Assuming plane strain in the xi, X2 plane, the stress field vector acting on a plane perpendicular

to X2 axis is two-dimensional. Noting that u = i 1+ 22 we can evaluate the components of

the stress vector acting on a plane perpendicular to X2 axis, using eqn (2.45),

2l	 2(p.—ip')e 12 ,	 (2.46)



(2.48)

(2.49)
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022 = (—')(e11^c22) + 2(p.—iL')c22.

Now, using eqn (2.17) and (2.18) we can express the stresses as,

021 = 2p32e12,

022 = pcL2 (c 11+ e22) - 2p32c11

Using the definition of strain in eqn (2.3) we have,

021 = p32(_u1+..U2)

022= p[a2(_u 1 +_u2) - 232_u1].

(2.47)

(2.50)

(2.51)

Substituting eqn (2.30) and (2.31) into (2.50) and (2.51) we have, for longitudinal plane

waves:

021 = 2icopN1N2t3' il/cL - 
t)

cxe

022 = (icipa - 2icopNI3 7cz) e

and for shear plane waves:

021 = icop(N - N)3 io)(N.1/cz - 
t)

e

iO)(N. 1/cL - t)
022 = -2iopN1 N2 e

2.3 Plane waves as reflected and transmitted fields at a plane interface

2.3.1 Snell's law

(2.52)

(2.53)

(2.54)

(2.55)

Derivations presented in this subsection are, in its approach, similar to any good textbook

approach (see, for example, Brekhovskikh 1980, or Graff 1975).



io(N[1J.i/a 1 - t)
u = N[1] A l e (2.56)
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Let us consider a system consisting of two semi-infinite media with their common boundary at

X2 =0, and a harmonic plane wave incident on the boundary. The incident wave generates n-i

refracted and reflected waves of arbitrary frequencies and directions of propagations. Therefore

there are n different plane waves in the whole system, with index numbers m = 1,...,n. The

incident harmonic plane wave can be expressed by,

where the subscript [1J denotes the index number of the wave. Let us assume that at the

boundary the incident wave generates j reflected and n-j- 1 refracted waves. The reflected waves

have index number m = 2,...,j and the refracted waves have index number m = j+1,...,n. The

reflected and refracted waves can be expressed as,

Wm(N[ m ]'XIOm -0
Li = NEm] Am e	 ; Am ^ 0, m = 2,...,n. (2.57)

In section 2.2.3 it has been shown that if a given plane wave can be expressed as in eqn (2.56)

and (2.57), then the stress field component a 21 , or a22, can be expressed in a form,

Bm e mm1 'm - t); 
Bm ^ 0, m = 1,...,n,	 (2.58)

where Bm are complex constants. The displacement components ui and U2 for each plane wave

are also expressed in a form given by eqn (2.58). Let us assume that one of the displacement

components ui or u2, or one of the stress components a 21 , or a22, is continuous across the

interface x2 =0. It is therefore valid to equate the value of this component on both sides of the

interface. Using eqn (2.58) the continuity across the boundary can be expressed in a form,

ic0 1 (s 1 x 1 -t)	 ico2(s2x2-t)	 io).(s3xJ_t)
B 1 e	 -B2e

+ B+i e 
j+i(j+ij+i) + ... 

+ B ei)n(5nt) =0,

where,

Nimil
Sm	 m=l,...,n,

am

(2.59)

(2.60)

and NEmil is the Nimj component along the x coordinate. Setting x 1 = 0, eqn (2.59) becomes,

iO)1t	 i(02t	 i(Ot	 j(O.1t	 in) t
B 1 e	 -B2 e	 +B.1e	 +...+Be '' =0,	 (2.61)
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which, by the Fourier theorem, leads to the equation,

0m=0i	 m=2,...,n,	 (2.62)

because it is impossible to obtain a harmonic process of a given frequency col by superposition

of harmonic processes of frequencies different than co t . Similarly, setting t = 0 in eqn (2.59),

and using eqn (2.62) we have,

iSiXi	 iS2Xl	 lSjXl	 15j+1X1	 iSnXl
B j e	 -B2e	 +B+1e	 +...-4-Be	 =0,

which gives,

Sm 5 1	 m=2,...,n.

Using eqn (2.60), eqn (2.64) can be re-written as,

NEmil - N1111
m = 2,...,n.,

am	 a1

(2.63)

(2.64)

(2.65)

Using eqn (2.34) and (2.62) it can be seen that eqn (2.65) can be expressed in terms of

wavenumbers as,

k[m]l=k[l]l; m=2,...,n.	 (2.66)

Equation (2.66) shows that the wavenumber components parallel to the interface are all equal to

each other.

If the incident wave propagates in a non-attenuating medium then, by eqn (2.17) and (2.34),

the wavenumber becomes real. Equation (2.66) then shows that in this case, all the

wavenumber components parallel to the interface become real and attenuation can take place

only in the direction perpendicular to the interface plane.

If the media on both sides of the interface are non-attenuating, then by eqn (2.17), am become

real and equal to the longitudinal phase velocities and, by eqn (2.18), 13m become real and equal

to the shear phase velocities. Then eqn (2.66) becomes the Snell's law equation (see for

example Brekhovskikh, 1980).

Equations (2.64), (2.65) and (2.66) are equivalent to each other and are analogous to the

Snell's law when the system is totally elastic. These equations,together with eqn (2.62), state

that the angular frequency =	 , m = 1,...,n and the complex value of s = Sm , m =1,..,n
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is preserved on both sides of the interface and is therefore spatially invariant everywhere in the
system. Let us then call s the Snell constant.

Some simplifications derived from the Snell's law

As eqn (2.62) and (2.65) are preserved across plane interfaces between viscoelastic media, it is

sometimes convenient to describe plane waves in terms of the Snell constant s, defined by eqn
(2.60). Let us assume that a given longitudinal plane wave can be expressed as,

- fNil iw(.i/cL - t)
u=	 (e

N2J

and a shear plane wave can be expressed as,

- I Nj iw(N.ii/13 - t)

1.N1J

(2.67)

(2.68)

By Snell's law, N1 /13 = N1/a = s = const, which is spatially invariant. Making use of the

definition, N.N El, stated in eqn (2.16) it can be seen that N2= (1.N)1t2, which gives two

different solution pairs,

N i = cs, N 2 = (1- c2s2) 1'2, and

N 1 = Cs, N2 = -(1- c2s2) 112, where c = a or c = 13.
	 (2.69)

Equation (2.69) shows that for each of the values of c there can be only two different pairs
(N1 ,N2). When N2 is positive then the first solution pair, (N1 ,N2), corresponds to a wave
propagating in the upward direction and the second solution pair, (Nl,-N2), corresponds to a
wave propagating downwards. Therefore there are only four different plane waves satisfying
eqn (2.62) and (2.65) simultaneously: two for c=a and two for c=13. Substituting eqn (2.69)

into (2.67) and (2.68), we obtain the following expressions for the longitudinal and shear
waves propagating 'upwards',

= 5	 as	 ' ia(1 .a2s2)'a a 1 x 2 iw(sx1-t)
(1_a2s2)h/J 

e	 e

-	 1(1.p2s2)la	 ico(1.f32s2)'a 13 x 2	iw(sx1-t)

J
e	 e

(2.70)

(2.71)
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Substituting eqn (2.70) into equations (2.52) and (2.53), we can express the components of the

stress acting on a plane perpendicular to X2 axis due to harmonic longitudinal plane waves as,

io(1a2s2) la a 1 x 2 iO)(sx1-t)
a21 = 2iopst32(1-a2s2) 1' e	 e	 ,	 (2.72)

ico(1a2s2) 'a a4 x 2 ico(sx1-t)
a22 = iwpa(1-2 2s2) e	 e	 .	 (2.73)

Substituting eqn (2.71) into equations (2.54) and (2.55), we can express the components of the

stress acting on a plane perpendicular to x axis due to harmonic shear plane waves as,

ico(1-l32s2) 1"	 'x 2 ico(sx1-t)
a21 = io)p3(1-232s2) e	 e	 ,	 (2.74)

ico(1 2s2) 'a f 1x 2 i0(sx 1-t)
a22 =	 e	 e	 .	 (2.75)

2.3.2 Displacement and stress field in a layer

In section 2.3.1 it has been shown that if it is assumed that the refracted and reflected waves are

plane waves then they have to have the same frequencies, eqn (2.62), and also satisfy Snell's

Law stated in eqn (2.65). In that section it was also shown that there are only four different

plane waves satisfying eqn (2.62) and (2.65) simultaneously in a given infinite viscoelastic

medium: two longitudinal plane waves and two shear plane waves. Let us, therefore, denote

the amplitudes of the four waves as,

T - the amplitude of the longitudinal wave 'up',

- the amplitude of the longitudinal wave 'down',

T5 - the amplitude of the shear wave 'up',

R5 - the amplitude of the shear wave 'down',

(see fig. 2.2), and derive an equation for the displacement and the stress field in the layer in
terms of T, R, Ts, and R5. In other words we want to find the transformation matrix At', so

that,

I RP] ía22
Rsa

1T1	 Iui
1.TsJ	 I..U2

(2.76)



ico(sx 1-t)
a12 = T5 icop3Cg 5 e (2.85)
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Let us denote,

A = (1a2s2) la,	 B = (1-32s2) 1'2, C = 1-2132s2.

- icoAa4x2	icoB3x2
g—e	 , g—e (2.77)

Then the displacement and the stress fields for each component wave can be expressed as

follows. Using eqn (2.67), (2.52) and (2.53) we have for the longitudinal wave 'up',

- 1u1)	 {}gp ia(sx1-t)
u=1 =T	 e( U2J	 p

iw(sx 1-t)
a12 = T 2kopsf32A g e

iO)(SX1 -t)
a22 = T icopaC g e

Using eqn (2.67), (2.52) and (2.53) we have for the longitudinal wave 'down',

R {}g;' ico(sx1-t)
e1u2J	 p

1 ko(sx1-t)
a12 = R2io)psI32Ag, e

-1 ia'(sx -t)
a22 =RiopaCg e

Using eqn (2.68), (2.54) and (2.55) we have for the shear wave 'up',

- 1u11	 IB)	 ioXsx1-t)
u =
	 = T i,..J g e

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)
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ko(sx1-t)
a22 = -T5 2iops32Bg 5 e

Using eqn (2.68), (2.54) and (2.55) we have for the shear wave 'down',

t-Bi -1 iW(sx1-t)

ii = {} =	 i-135f g 
e

1 iO)(SX 1-t)
a12 = Rio)pCg5 e

a22 = P5 2icops(32
B g;1 io)(sx1-t)

e

(2.86)

(2.87)

(2.88)

(2.89)

Combining equations (2.77)-(2.89) we can describe the displacement-stress field in matrix

notation as,

-1	 2-1.	 2iopaCg	 2iwps Bg	 icDpaCg1, -2icops B;

2iwpsJ 2Ag	 icop3Cg 1 2iwps32A, iopl3 C;

-Bg	 asg
	

B;

Ag	 -13s;

	

R,	 a22

	

JRs	 a21

	

T,	 Ui

	

Ts	 U2

-1
asg

-1
-Ago

(2.90)

ico(sx 1 -t)
where the common term, e	 , has been omitted here for clarity. The formulation given

by eqn (2.90) is similar in concept to that of Thomson (1950) and Haskell (1953), where the
matrix formulation was applied to elastic media. Propagation and reflection of ultrasonic waves
in viscoelastic media were considered in a number of recent publications (see for example
Becker and Richardson 1970, Fiorito et a!. 1985, Deschamps 1990).

Reflection coefficient for a plane wave at a single interface between two
viscoelastic media

Consider the interface between medium 1 and medium 2, both of which are viscoelastic. The
interface lies in the x 1 ,x3 plane, and satisfies the equation x2 =0. A longitudinal plane wave of
unit amplitude is incident on the interface from medium 1, the direction of propagation being in
the x 1 ,x2 plane. The angle of incidence of the plane wave to the normal to the interface is
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denoted by 8. Let us assume that the displacement and stress field is continuous across the
boundary x2 =0 and the reflected and refracted field can be expressed as a sum of plane waves.
From section 2.3.1 it follows that all the plane waves must have the same frequency and must
satisfy Snell's Law. In other words, equations (2.62) and (2.65) are preserved on both sides of
the interface. Consequently, the analysis given in section 2.3.2 shows that on each side of the
boundary there may be at most four different plane waves satisfying eqn (2.62) and (2.65)
simultaneously and, therefore, eqn (2.90) describing the displacement and stress field is valid
on both sides of the boundary if appropriate values of mechanical constants are inserted into

eqn (2.77).

Let us therefore denote the amplitudes of the plane waves in medium 1 as, R 1 R si' T1

T51 and in medium 2 as, R 2 R52 , T 2 T52 , (see fig. 2.3). Using eqn (2.90) the

displacement and stress field in medium 1 can be expressed as,

iop 1a1 C 1g,'1 1iwp 1 sfl'Bg 11 iwp a 1C 1 g1	-1iwp1sB1g1

-1iop 1 s13A 1g'1 iop 1 3 1C 1g	 1kopisI3Ai1 iop 1J1C11

a 1 sg	 -B1gj	 a1sg1,1	 B11

- 1 sg	 A11

or,

R1	 a22[1]

Rs1

=	 ,(2.91)
T 1	U1[1]

T51

(2.92)

Similarly, the displacement and stress field in medium 2 can be expressed as,

iwp2a2C2g	 2iw2sBg iwp 2a2C22 -2w2sB2

-2iop2sA2g	 1(p22C2g52 2iop2sA22 iop2Ji2C2

a2sg	 -B2g	 a2s2	 B2;2

A2,2	 22

or,

R52	 a12[2]

=	 ,(2.93)
T	 U1[2]

Ts2	 "2[2]

1t R2P = 1{a2}1
(2.94)

1 { u2} 1
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Using eqn (2.92) and (2.94), the requirement of stress and displacement continuity across the
boundary can be expressed as,

= t/l(2{T?}.	 (2.95)

Consider now a single longitudinal plane wave of unit amplitude incident on the interface from
medium 1. We also assume that there are no other waves incident on the boundary. (T 1 } is the
vector of the longitudinal and shear wave amplitudes incident on the boundary from medium 1
and is therefore known. Since there are no waves incident on the boundary from medium 2,

f 
R2 ) is null. Thus T 1 =1and T 51 = R 2= R2=O, giving,

f Ti}={ j } ,and 1R2}{g}
	

(2.96)

The remaining four complex values of R 1 R51 , T 2. T 52 , which are the amplitudes of
reflected and transmitted waves across the interface, are to be calculated. Equation (2.95) can be
re-written as,

1(R2}
[CA(R1	 T1] 1{Ti) = [ 1 R2 "'T2] l{T2}	

(2.97)

where '1R1	 and	 tA('r are of dimensions 2x4 and are submatrices of 4%'i and

€A€'2, respectively. Equation (2.97) may be re-written to give,

['aR1 t'T2] { T2 } j = [R2 '"T1] { T) J.	
(2.98)

The right-hand side of the eqn (2.98) is known, therefore eqn (2.98) is a system of four linear
equation with four complex unknowns. The solution of eqn (2.98) yields two reflection
coefficients: longitudinal R 1 and shear R 51 , and two transmission coefficients, longitudinal
T 2 and shear T 52, as functions of Snell's constant, s, which in turn can be related to the angle
of incidence of the longitudinal wave from medium 1, by eqn (2.60).

2.3.3 Boundary stiffness matrix

In section 2.3.2 the derivations of reflected and transmitted hamionic plane waves were carried
out assuming that the displacement and stress fields are continuous across the boundary. This
corresponds to the case of a perfect bond between two media, where the displacements are
transmitted across the boundary unchanged. However, when the rigidity of the interface is
assumed to be fmite, then the particle displacement on each side of a boundary may not be
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identical. In such cases it is necessary to take the stiffness of the interface into consideration
when calculating reflected and transmitted waves at the boundary. There are a number of
circumstances in which an interface between two solids can be approximated to a massless
spring (see for example Tattersall 1973, Nagy 1990, Arakawa 1983, Pilarski and Rose 1988).
More detailed discussion of this can be found in subsection 1.4.1 of this thesis.

In general, the boundary stiffness matrix is defined by six independent constants. However,
when the mechanical properties of the interfaces are the same regardless of the sense of an axis
perpendicular to the interface, and the mechanical properties are isotropic in the plane parallel to
the interface, the number of constants fully defining the boundary can be reduced to two: the
normal stiffness and the tangential stiffness. This can be shown as follows.

Consider an interface which allows for discontinuities of the displacement field. The difference

of the displacement across the boundary can be expressed as the discontinuity vector AU (see

fig. 2.4).

Across the boundary the stress field is continuous, that is, the stresses on both sides of the
boundary are equal. Moreover, let us assume that there is a linear relationship between the
stress vector and the discontinuity vector at the boundary. This can be expressed in matrix
notation as,

Ia21	 r k11

a22 =1 k21

I	 Lk31
'23

k12 k13 - IAui

k22 k23	 Au2
k32 k33 i LAu3

(2.99)

or, more concisely,

icAii,	 (2.100)

where Auj, I = 1,...,3 is the difference in the displacement between two media across the
boundary in the th direction. The complex stiffness matrix, 3, represents the mechanical

properties of the boundary. From the Betti theorem of reciprocity (see for example Timoshenko
and Goodier 1970), matrix X is symmetric ie klJ = kJ, ij = 1,...,3, and therefore, it can be

defined by six independent constants.

If we assume that the stiffness of the boundary is invariant in a given linear coordinate
transform like rotation or inversion then, using eqn (2.100), this statement can be expressed
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as,

(XAii)= j;'(iii),	 (2.10 1)

which means that the same value of stress vector is obtained before and after the coordinate

transformation. Dropping out the brackets and assuming that iii^(0), we have,

1:W= jç'1q.	 (2.102)

Invariance in inversion of the X2 axis

If it is assumed that the mechanical properties of the boundary are the same regardless of the
sense of the x2 axis, then the stiffness matrix X must be invariant in inversion of the x2 axis.

Now the coordinate transformation matrix is,

100

Y= 0 -1 0
	

(2.103)

001

Substituting eqn (2.103) into eqn (2.102) and using the symmetry of W, we have, k12 = k21 =

k23 = k32 =0, and W becomes,

r k11 0 k13

0 k22 0	 (2.104)

L k31 0 k33

Invariance in rotation about the x2 axis

If the mechanical properties of the boundary are isotropic in the xl ,x3 plane, then the stiffness

matrix remains the same in rotation about the x2 axis. Here the transformation matrix is,

rcosO 0 -sinO 1
'=1 0	 1	 0
	

(2.105)

L sine 0 cosO J

where e denotes an angle of rotation around the x2 axis. Substituting eqn (2.105) into eqn

(2.102) and using the symmetry of 3, we have, k 13 = k31 = 0, and k11 = k33 . If we denote

k 11 =k33 =kTandk22 =kN,thenthematrix Xbecomes,



(2.108)

0	 1/'T
L1IkN 0

(2.110)
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rr 0 01
0 kN 0
	

(2.106)
[0 OkT]

where, the (in general) complex values of kç and kN are the tangential and normal stiffnesses

respectively.

Sometimes it is convenient to describe the mechanical properties of the boundary by its stress-
displacement transfer matrix, relating the stress-displacement field on one side of the boundary
to that on the other. This can be expressed as,

{} ={}U[fl U[2]

(2.107)

where is the stress-displacement boundary transfer matrix, and the index numbers [1] and [2]

refer to the stress and displacement fields at the boundary in medium 1 and medium 2,
respectively. From the assumptions stated at the beginning of this section, the stress field is
equal on both sides of the boundary,

Using eqn (2.100) the displacement field at the boundary in medium 2 can be expressed in
terms of the stress-displacement field at the boundary in medium 1 as,

(2.109)

In some cases, for example when calculating the stress-displacement field of a plane wave
whose direction of propagation is parallel to the (xl,x2) plane, it is sufficient to consider
equations (2.108) and (2.109) in their two dimensional form. In that case X becomes a 2 x 2

matrix and its inverse becomes,

Equations (2.108) and (2.109) can be then expressed in matrix notation as,
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1	 0	 0

o	 i	 o

o 1/'N 1

"CT 0 0

0 ran
0 )a21	 =
01

I	 l
1	

[1]

f

I	 '
[2]

(2.111)

where the 4 x 4 matrix is the boundary transfer matrix for the plane strain case in the (xl,x2)

plane. Expression of the form of eqn (2.111) has been given by a number of authors (see for

example Schoenberg 1980, Pilarski et a!. 1990).

There are three limiting cases of the boundary stiffness matrix (see for example Pilarski and

Rose 1988):

Total debonding takes place when kT = 0 and kN = 0, which means that the stresses on both

sides of the boundary vanish and the displacements on both sides of the boundary can be

arbitrary. In other words, the two media have free surfaces and there is no transmission of

stresses across the boundary.

The ideal connection, or 'welded' boundary condition takes place when k1'-+oo and kN+oo. In

this case the stress and displacement fields are continuous across the boundary.

The 'smooth' boundary condition occurs when kT = 0 and 	 This boundary condition

allows for free tangential displacements across the boundary with zero tangential stresses and

continuous normal stresses and displacements. In other words the two media are in intimate

contact, sliding on each other in a frictionless manner.

Further analysis of the spring model and comparisons of its perfonnance against more accurate

theories is given in section 4.5 of this thesis.

2.4 Finite transducer

In section 2.3 the problem of the propagation of plane waves and their interaction with plane

boundaries has been discussed in detail and the theory for the calculation of ultrasonic reflection

coefficients from single boundaries has been given. These derivations assumed that the incident

field is a plane harmonic wave extending infinitely along the interface. However, because the

transducers used to generate ultrasound are of finite dimensions, they cannot produce single

infinite plane waves. It is therefore desirable to address the applicabilty of the infinite plane
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wave theoiy to real cases.

In this section it is shown that the ultrasonic fields generated by transducers of finite
dimensions can be decomposed into infinite plane wave components using Fourier
transformation. In other words, the acoustic fields generated by ultrasonic probes can be
represented as the sum of infinite harmonic plane waves propagating in different directions. The
theory presented here can, in general, be used in either two or three dimensions. The derivation
shown here considers the two dimensional plane strain case.

2.4.1 Transducer generating a single infinite plane wave

Let us assume an infinite inviscid liquid half space from the surface of an infinite transducer at
x2=O and continuing towards positive values of X2 (see fig. 2.5). The infinite transducer

generates a harmonic longitudinal plane wave in the liquid given by the equation,

ii A {} io)(N.x/cL - t)
=	 C (2.112)

Let us determine the displacement boundary conditions which support the generation of the
wave described by eqn (2.112). Setting x2=O in eqn (2.112), we have,

ü=A} 
iO)(N1x1/cX-t)	

(2.113)

From eqn (2.113) it can be seen that the movement of the liquid at the surface of the transducer
consists of displacement components both normal (u2) and parallel (Ui) to the surface of the

transducer as shown in fig. 2.5. If the face of the transducer moves in this manner then the
single plane wave described by eqn (2.112) will be generated. For our purposes it is convenient

to ignore the component of movement parallel to the face of the transducer, and it can be shown
that this has a negligible effect in liquids as follows. Consider the motion of the face of the
transducer consisting entirely of movement parallel to the face of the transducer,

ii =A{} iO)(N1x1/a - t) 	
(2.114)

For a solid moving in a perfect, inviscid, liquid no wave will be generated as there is no
coupling mechanism on the boundary. In practice, when the viscosity of the liquid is taken into

account, some shear wave field wifi be generated, but because of the viscosity, this field is
bound to attenuate in an extremely short distance.



ico(N1x1/a - t)
u2=Ae (2.117)
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Now if the two different motions of the transducer, described by equations (2.113) and

(2.114), are added together,

ü=A{} e+A{} iw(N1x1/a-t)e	 ,	 (2.115)

then, the field generated by the transducer will be the superposition of the fields generated by

each of the motions separately. As the second term in eqn (1.115) has no effect on the wave
generation in an inviscid liquid, then the motion of the transducer given by,

ii = A{} iw(N1x1/a - t),	 (2.116)

must generate the same field as the motion described by eqn (2.113).

2.4.2 Field generated by a finite transducer in liquid

As can be seen from eqn (2.116), the generation of a plane wave can only be achieved by a
transducer extending infmitely in the x direction, whose normal displacement at its face is

governed by the equation,

In reality, however, the transducer is of finite size, the displacement at its face being an

arbitrary continuous function. It is therefore necessary to consider the case of the finite

transducer and to derive the expression for the displacement field generated in a liquid. Let us
-lOX

assume that at the boundary X2 =0 the normal displacement is given in a form, U2 = f(x1) e

as shown schematically in fig. 2.6.

Function f(xi) is continuous and vanishes outside the surface of the transducer, and therefore

satisfies the Dirichiet condition and is absolutely integrable. By the Fourier theorem it is valid to

describe f(x1) in a Fourier integral form as (Bracewell 1965),

0O +00	 ikiXi)	 1x1
f(x1)=-'— 5 { 5 f(x)e	 e	 dk1,

21t-00 -00
(2.118)

which states that the normal displacement at the boundary can be formed by superposition of
spatial harmonic components,
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ikixi -iwt
u2(x1)=B(k1)e	 e

the amplitudes of which are given by the Fourier integral,

-ik1x
B(k1)=— J f(x1)e	 dx1.

2it -

(2.119)

(2.120)

Equations (2.119) and (2.117) describe the same harmonic motion of the front face of the
transducer if k1 = o)N1/a, and B(k1) = AN2. Therefore, setting

	

ak1	 __

N1 = -, N2 = (1N)la , A(k1) - B(k1)

	

0)	 - N2 '	 (2.121)

each of the harmonic components, given by eqn (2.119), generates a plane wave, described by

eqn (2.112), in the liquid. Using the principle of superposition it is now valid to sum all the
-icot

plane waves generated by spatial harmonic components of the displacement field f(x1) e 	 to

form the field generated by the fmite transducer,

e° IN! icü(N.x/a - t)
ü=5A1N2}e	 dk1, (2.122)

where N and A are functions of k1, given by eqn (2.121).

According to the assumptions, f(x1) vanishes outside the range <Xla,Xib>, and therefore the

infinite Fourier integral in eqn (2.120) can be replaced by a fmite Fourier integral,

X ib	 -ik1x1
B(k1) =	 5 f(x1) e	 dx1 .	 (2.123)2it Xia

If it is assumed that the function f(xi) fully "fills" the range <Xla,Xib> then it is possible to

show (see for example Randall 1987) that the function B assumes significant values only

between -kid and kid, where kid is a real positive value approximately equal to (xlb-xla)4,

B(k1) -{ significant -kld^kl^kld, where k1d='(x1-x1y1 	 (2.124)0 elsewhere

In other words, the k1 domain bandwidth of the function f(xi) is approximately equal to the

reciprocal of the spatial width of the transducer. Therefore the wider the transducer the

narrower the k1 bandwidth of the generated field. The wavenumber of a given plane wave can



a
(2.125)

C0 =sin-1(k1—),
(I)

(2.127)
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be described using eqn (2.34) as,

Since in an inviscid fluid the loss terms are zero, a is real by eqn (2.17), and the phase
velocity, c = a, by eqn (2.41). The wavenumber component parallel to the face of the

transducer can be evaluated as,

k1 = Iki sinO = sinO,	 (2.126)

where 0 is the angle between the direction of propagation of the plane wave and the normal to

the face of the transducer. Equation (2.126) can be rewritten as,

which allows us to state that if the generated field has a narrow k1 bandwidth (wide transducer)
then it consists of the plane waves whose directions of propagation are close to the
perpendicular to the face of the transducer. II the k1 bandwidth of the field is wide (narrow
transducer) then it consists of plane waves of wider spread of directions of propagation. The
angular spread of the field is also dependent on the frequency, co, of the harmonic process.

Equation (2.127) shows that the angular spread of the field decreases with frequency.

As the k1 bandwidth of the generated field is finite then the infinite inverse Fourier integral in
eqn (2.122) can be replaced by a finite one without a significant loss in accuracy,

kid (N1 iw(N.i/a - t)
ii	 J A

-kid 1N2} e
	 l '	 (2.128)

It can be seen from eqn (2.123) and (2.128) that the spatial decomposition (forward Fourier
transform) and synthesis (inverse Fourier transform) can be performed on a finite range of the
x space and k1 space. Therefore the Fast Fourier Transform algorithm can be employed for

numerical evaluations of equations (2.122) and (2.123) without significant deterioration of
computation accuracy.

Displacement field generated by a finite transducer

To show how to use equations (2.122) and (2.123) let us calculate the ultrasonic field generated
by a 10 mm wide transducer in water. Since the two dimensional plane strain theory is to be
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applied here, the transducer is assumed to be placed perpendicular to x i, x2 plane (see fig.
2.6) so that it extends infinitely in the direction nonnal to the x i, x2 plane. The transducer is of
finite dimensions in the xl direction and X lb - X la = 10 mm. If the normal displacement at the

face of the transducer is known then, in accordance with eqn (2.122), it is possible to obtain the
expression for the displacement field in the fluid as a superposition of longitudinal plane waves.
The displacement field at x2=0 is therefore given by,

00	 ico(Nixi/a-t)
ii(xi0)=JA{} e	 dk1.	 (2.129)

At a distance 12 in the direction normal to the surface of the transducer the displacement field is,

00	
io)[(Nlxl+N212)IcL - 	

dk1,	 (2.130)ii(xl,12) =5 A {} e

which shows that the phase of each of the plane wave components shifts in proportion to the
product, N2l2, and the amplitude remains the same. Therefore, in order to compute the

displacement field at the distance 12 from the face of the transducer, it is valid to decompose the

normal displacement at the face of the transducer into sinusoidal components, shift the phase of
each component by oN2l2/a and synthesise the field back by adding all the components

together.

The method was used to calculate ultrasonic field distributions in front of 10 mm wide
transducers in water outputing energy at different frequencies and with different displacement
shapes at their faces. Figures 2.7 and 2.8 show the computed displacement component normal
to the face of the transmitter. The field is generated in water by transmitters with Gaussian and
tapered normal displacement patterns at their faces. The Gaussian profile is defined by the
function f(x) = exp(-x 2). The tapered profile is a modified rectangular window function,
increasing over 10 % of its width from zero to unity in a half sine manner, then maintaining the
unity value over the next 80 % of its width, and then fmally decreasing from unity to zero over
10 % of its width again in a half-sine shape manner (see fig. 2.9).

In figures 2.7 and 2.8, 10 mm wide transducers are placed at the origin of the Cartesian
coordinate system and generate fields in the positive direction of the vertical axis, which is
shown in the middle of each plot. This way each of the four figures show the vertical
component of the displacement field in a square extending from 100 mm to the left of the
transducer to 100 mm to the right of the transducer in the horizontal direction and from zero to
200 mm in the vertical direction. In fig. 2.7 both transducers operate at the frequency of 2
MHz, and in fig. 2.8 the probes operate at the frequency of 10 MHz.
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Comparing figures 2.7 (a) with 2.8 (a), and 2.7 (b) with 2.8 (b), it can be seen that the spread

of the generated field is frequency dependent and is smaller for higher frequencies. Indeed, the

area isonified by the transducer operating at the frequency of 10 MHz (fig 2.8 (a)), is contained

in much closer proximity to the transducer's axis of symmetry than in the case of the same

transducer operating at a frequency of 2 MHz, shown in fig. 2.7 (a).

Transducers with tapered displacement patterns generate fields with very strong middle lobe

and much weaker side lobes (see figures 2.7 (b) and 2.8 (b)), sometimes referred to as the edge

waves (see for example Guyott and Cawley, 1988). The edge wave phenomenon is not seen

for the Gaussian type transducers (see figures 2.7(a), and 2.8(a))

Comparison of the plane wave decomposition approach with the Huyghens

principle method

Probably the most popular way to solve the radiation problem of the finite transducer is to

employ Huyghens principle by integrating the Green's function over the transducer's area (see

for example Morse and Ingard 1968). For the comparison between the Huyghens principle

approach and the Fourier decomposition and synthesis method, the normal displacement field

200 mm away from the 10 mm wide transducer was computed. Figure 2.10 shows the results

of the calculations. The vertical axis represents the amplitude of the displacement in the

direction perpendicular to the face of the transducer, while the horizontal axis represents the

distance away from the transducer's axis of symmetry. Figures 2.9 (a) and 2.9 (b) look

identical, indicating perfect agreement between the Huyghens principle approach and the

Fourier decomposition method.

2.4.3 Reflected field generated by a finite transducer in liquid

So far in this section we have been concerned with the generation of a field by a finite

transducer. Let us now study the reflection of a finite beam from a plane interface. Consider
therefore a finite transducer in an inviscid fluid and a boundary at x2=O as shown in fig. 2.11.

The axis of the transducer is inclined at an angle 0 with respect to the normal to the interface

and placed so that its face is at a distance di from the origin of the x i, x2 coordinate system.

The total field generated by the transducer will now be composed of the incident and the

reflected field. The incident field can be found by the Fourier decomposition and synthesis of

the plane wave components as was shown in the previous sections. If the reflection coefficient
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of each of the plane wave components is known then the reflected field can be evaluated by the

summation of the reflected plane waves as they are the response to the incident plane waves.
The Fourier decomposition of the incident field is performed in xi, x coordinates (the

transmitter coordinates) and the synthesis of the reflected field in the x'j, x coordinate system

(the receiver coordinates).

If the reflection coefficient is independent of the angle of incidence and is equal unity then the

reflected field at the face of the receiver can be evaluated using eqn (2.130),

+00

ii(x'j,O) = 5 
A {Ni'} i(o[(N'jx j'+Nl)/a - 1]

e	 dk1,
-00

(2.13 1)

where (see fig. 2.12) N = -Ni, NI = Nj and l= -(dj+d2). Note that the distance l'

along x coordinate has to be taken with the negative sign because the reflected waves

propagate in the direction opposite to the 4 axis.

Now let us assume that the reflection coefficient of a plane wave of wavenumber ki, given in

the xj, x coordinate system, is R(ki). Decomposing the wavenumber vector into the xl, x

coordinate system (see fig. 2.13), the x component of the wavenumber is,

,2 ,21f2
k1 = -k'1cosO + k'2sinO; (k = (k -k1 ) , Re(k)^O).

The Fourier synthesis of the reflected field can now be calculated as,

00	
'' iw[jx+Nl)/a - t]

ii(x'j,O) =JA R(-k1cosO+ksinO) {,} e 	 dk1.

(2.132)

(2.133)

If the function describing the displacement field at the face of the transmitter fully "fills" the
width of the transducer then, by eqn (2.124), the k'1 bandwidth of the generated field is 2kId.

The integral in eqn (2.133) can then be approximated by a finite integral without a significant

loss in accuracy,

k id '' iw[(N'jx 1 +N212)/cz - t]
,,	 ,,. ,,

ii(xI,0)	 5 A R(-k1cosO+ksinO) {,} e	 dk1.
-kj

(2.134)

Equation (2.134) describes, in the receiver coordinate system, the displacement field reflected

from a boundary whose reflection coefficient is a complex function R(ki), where ki is the

horizontal wavenumber component of an incident plane wave at the boundary (see fig. 2.13).

Equations similar in form to eqn (2.134), were derived by other researchers studying the

reflection of bounded beams from plane interfaces (see for example Ngoc and Mayer 1979,

fc\
(WNDOH)
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1980 as well as Nayfeh and Chimenti 1984).

This equation can now be used to obtain the displacement field distribution at the face of the

receiver (see fig. 2.14). By integration of the normal component of the displacement field over

the face of the receiver, the overall effect of the reflected field on the receiving transducer can be

calculated. If we assume that the electric potential generated by the receiver is proportional to

the average displacement field at the receive? S face then the voltage generated by the receiver is

proportional to the area integral of the reflected field over the receiver's face.

2.5 Conclusions

It has been assumed that viscoelastic materials can be characterised by two complex Lame's

constants and the density. Under this assumption it has been shown that longitudinal and shear

plane waves satisfy the equation of motion of viscoelastic materials and the wavenumbers of the

plane waves are, in general, complex vectors. Plane waves propagate in the direction of the real

part of the wavenumber and attenuate in the direction of the imaginary part of the wavenumber.

It has been shown that at an interface between two media the reflected and transmitted plane

waves retain their frequencies and wavenumber components parallel to the interface. Using this

finding it has been proved that a single plane wave can, in general, excite only four different

plane waves in a viscoelastic layer. Therefore any response of a viscoelastic layer to a single

plane wave excitation can be described using a combination of at most four different plane

waves propagating within the layer. This greatly simplifies calculations when the reflection or

transmission coefficients of multilayered systems are required.

It has been shown that the acoustic field generated by a finite-sized transducer can be

decomposed into plane waves and the response of a given system to such an excitation can be

calculated as the sum of the responses to each of the plane wave components. The

decomposition of the field can be achieved using Fourier transformation and the sum (integral)

of the plane wave components can be obtained using inverse Fourier transformation.

The theory presented in this chapter can be used to calculate the distribution of the field

generated by a finite sized transducer (radiation problem), the interaction of the field with plane

interfaces (reflection problem) and, subsequently, to find the distribution of the acoustic field at

the face of the receiver. The theory presented in this chapter can therefore be used to

quantitatively predict results obtained in laboratory tests where finite sized transducers are

always used.
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x2

Fig. 2.1 Wavefront of a plane wave.
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bottom boundary

Fig. 2.2 Four waves of amplitudes Tp, Rp, Ts, and Rs in a layer.
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x2

waves incident	 waves generated at interface
from medium 2
	

and propagating in medium 2

//

	
medium 1

waves incident	 waves generated at interface
from medium 1
	

and propagating in medium 1

Fig. 2.3 Schematic diagram of waves at a single interface.
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x2

medium 2	
boundary

medium 1
	 xl

x3

Fig. 2.4 The stress and the discontinuity vector at the boundary.
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x2

Fig. 2.5 Infinite transducer in liquid. Arrangement
of the coordinate system.
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Fig. 2.6 Finite transducer in liquid. Arrrangement
of the coordinate system.
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x2

X2	 4

Fig. 2.11 Arrangements of the probes and their coordinate
systems with respect to the interface.
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Fig. 2.12 Reflected wave in the receiver's coordinate system.
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Fig. 2.13 The wavenumber vector in the transmitter
and interface coordinate systems.
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x2

x'

Fig. 2.14 Calculation of the effect the reflected field has on the
receiving transducer. The shaded area marks the part
of the reflected field taken for the evaluation of the
response of the receiver.
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CHAPTER 3

The reflection coefficient from a multilayered
viscoelastic plate

3.1 Introduction

Chapter 3 is concerned with the reflection and transmission of acoustic waves from

multilayered viscoelastic plates. The chapter is divided into four sections, the first applying the

time domain approach to fmd the plate response to a pulse excitation, the second giving a

solution method for the problem of reflection and transmission from the plate in the frequency

domain, the third describing a procedure for the calculation of the fields reflected from and

transmitted by the plate when excited by a fmite transducer, and the last containing the main

conclusions of the chapter.

In section 3.2 the response of a plate to a pulse excitation is derived by studying the pulse

propagation and reflection from the boundaries of the plate. If it is assumed that the plate is

non-dispersive, then the pulses do not change their shape during the propagation across the

plate and on reflection from the boundaries. The time domain response from the plate will then

consist of a series of equally delayed pulses, decaying with time. Such a response can be

theoretically derived and the frequency response of the plate can then be obtained by calculation

of the Fourier integral over the time domain response. This approach formed a basis of a new

method for determination of phase velocities in viscoelastic materials which has been developed

and compared with an existing technique presented by Sachse and Pao (1978).

In section 3.3 the frequency response of a multilayered viscoelastic plate is calculated directly in

the frequency domain without prior derivation of its time domain response. This makes it

possible to study the behaviour of viscoelastic and dispersive multilayered plates in a relatively

straightforward manner. The time domain response from these plates can then be obtained by

calculation of the inverse Fourier transform integral over the frequency domain response.

Section 3.4 develops the theory presented in section 3.3 for the case of finite transducer

excitation. The acoustic field generated by a finite transducer can be decomposed into its
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harmonic plane wave components. For each of the plane wave components the reflected and

transmitted harmonic plane waves can be calculated. The overall acoustic field for the system

can then be calculated by summation of the reflected and transmitted harmonic plane waves.

In section 3.5 the main conclusions of the chapter are presented in a concise form.

3.2 The reflection coefficient from a viscoelastic plate at normal incidence:

the time domain approach

In chapter 2 we were concerned with the reflection coefficient from a single interface between

two semi-infinite media. Now let us consider a plate of finite thickness being excited by an

infinite plane wave. To simplify the case let us assume that the wave hits the plate boundary at

normal incidence and for convenient comparison with experiment let us assume that the plate is

subjected to a pulse excitation. Then it is possible to show that for a perfectly elastic plate, the

shape of the pulse does not change on reflection and transmission at the plate faces. Therefore

as a result of multiple reflections the received signal consists of a family of pulses of exactly the

same shape but magnitudes decreasing with time. In order to obtain the reflection coefficient as

a function of frequency, a Fourier integral is calculated. This makes it possible to determine the

resonant frequencies of the plate and to relate them to the phase velocity of the bulk longitudinal

wave within the plate. This relationship can be used to find the value of the phase velocity of

the bulk wave within the plate experimentally.

This approach was developed earlier in the project and has since been used for the experimental

evaluation of phase velocities of bulk waves in adhesive joints. However, it has not been used

as a main tool for the theoretical analysis in the subsequent work and so a paper which was

written on it is presented in Appendix A.

3.3 The reflection coefficient of an infinite beam from a multilayered,

viscoelastic plate: the frequency domain approach

In section 3.2 and Appendix A the derivation of the reflection coefficient from a plate at normal

incidence was carried out in the time domain. The plate response to a plane wave pulse of

infinite spatial extent was analysed using simple geometric relations and the assumption that the

pulse shape is left unchanged on reflection and transmission at the plate boundaries which is the

case when nondispersive materials are considered. However, the frequency domain approach,

which was introduced in chapter 2, is more powerful and is capable of solving more
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complicated problems such as reflection, transmission and propagation of ultrasonic waves

through dispersive media. In this method, first the steady state response to an infinite harmonic

plane wave is calculated. Then, in order to obtain the response to pulse excitation, a harmonic

synthesis of the reflected field is carried out. Also a finite transducer problem can be

transformed to a harmonic plane wave reflection coefficient problem as has been shown in

chapter 2. Therefore it is useful to continue the frequency domain, infinite plane wave approach

started in chapter 2 to implement a full, multilayered viscoelastic model with different boundary

conditions between the layers. More extensive presentation of the Fourier decomposition

method and its applications to acoustics and ultrasonics can be found in good textbooks such as

Morse and Ingard (1968), Brekhovskikh (1980), or Fahy (1985). A very good general

introduction to the subject of frequency analysis is presented in Randall (1987).

In the first part of this section a solution procedure based on transfer matrices is presented. This

approach follows in principle that of Thomson (1950) and Haskell (1953). Some examples of

the reflection coefficient predictions using this technique are given and compared with the time

domain approach presented in Appendix A.

In the second part of this section the problem of instability of the Thomson-Haskell algorithm is

discussed in some detail. An alternative solution procedure, the global matrix algorithm, is

developed. The global matrix technique is similar in approach to that introduced by Knopoff

(1964) but offers a significant improvement in numerical stability over both the Thomson-

Haskell and the Knopoff methods.

3.3.1 Wave coupling algorithm; transfer matrices approach

The transfer matrices approach was introduced by Thomson (1950) and corrected by Haskell

(1953). It has subsequently been used widely in seismic applications as well as in ultrasonics.

The method was limited to elastic media. Propagation and reflection of ultrasonic waves in

viscoelastic media were considered in a number of recent publications (see for example Becker

and Richardson 1970, Fiorito et a!. 1985, Deschamps 1990).

Let us consider an n-i layered plate in a Cartesian coordinate system so that the plate

boundaries are normal to the X2 axis. The media are numbered consecutively from 1 to n+1 so

that the semi-infinite spaces are numbered 1 and n+i respectively (see fig. 3.1). The x2
coordinates at which the layer interfaces are placed are denoted by Yi' where i=i,...,n is the

number of the interface.
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Relationship between the stress-displacement vectors at the lop and bottom
boundaries of a single layer

Let us take the k layer (see fig. 3.2). As has been shown in section 2.3.1, there are at most
four different plane waves in the layer, two waves propagating in the positive X2 direction
(transmitted waves), the amplitudes of which are stored in vector {Tk), and two propagating in
the negative X2 direction (reflected waves), the amplitudes of which are stored in vector (Rk}.

Using eqn (2.90) it is possible to relate the displacement and stress field to the amplitude
vectors in a form,

where (see eqn 2.77),

A = (1-a2s2) 112,	 B = (i3252)1a, C = 1-2f32s2,

iwActx	 iO)Bf31x2
g=e	 2, g=e

Equation (3.1) can be expressed in matrix from as,

(3.2)

I (R} 1(Vk(x2)) = VA(k(X2) (Tj) I where (Vk(x2)) = (Xx2)l
[ii(x2)J

(3.3)

Vector (Vk(x2)) is the stress-displacement vector in the kth layer and matrix e4(x2) is, in
general, 4 x 4 complex. In order to obtain a transfer matrix, relating the stress-displacement
field at one boundary to the stress-displacement field at the other boundary, eqn (3.1) can be

used. Figure 3.2 shows the position of the coordinate system used for the evaluation of the
stress and displacement field in the kth layer. The origin of the system has been moved to the
bottom of the layer to simplify derivations. In this 'local' system of coordinates the vertical
coordinate takes on zero value at the bottom of the kth and at the top of the layer equals dk,
which is the layer thickness. Let us denote the local coordinate system as (xi, xi).

Setting x = 0 in eqn (3.1), the stress-displacement field at the bottom boundary of the kth layer
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can be expressed as,

1{Rk)
{Vk(0)) =	 1. (Tj) }

and, for the top boundary, setting x = dk in eqn (3.1), we have,

I (R} 1
(Vk(dk.)} = A(k(dl)	 1J I

From eqn (3.4) we have,

{ (Rk)j
(Tk} J = tç(o) (Vk(0)).

Substituting eqn (3.5) into eqn (3.6), we have,

{Vk(dk)) = 2k {Vk(0))

where,

=	 Aç'(0).

is the transfer matrix for the kth layer and relates the stress-displacement field on the bottom

boundary of the layer to the the stress-displacement field on the top boundary of the layer.

Relationship between the stress-displacement vectors across a single boundary

between two layers

In certain cases it is useful to account for interfacial imperfections across the layers (see sections

1.4.1 and 2.3.3 of this thesis). In such cases the interface can be given its own transfer matrix,

relating the stress-displacement field on one side of the boundary to the other side of the

boundary (see fig. 3.3). This relationship can be expressed in the form of eqn (2.107) as,

(V(yk)) = t k (V(yj)),	 (3.9)

where (V(yk)) and (V(y)) are the stress-displacement field at the bottom and the top of the

kth interface. The boundary transfer matrix 	 is given by eqn (2.111).
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Relationship between the stress-displacement vectors at the top and bottom

boundaries of an entire multilayered plate

Having developed the transfer matrices for the layers and the boundaries, it is now possible to

relate the stress-displacement field on one side of the whole plate (ie at X2 = y i) to the the other

side of the plate (ie at X2 = yn) . Using eqn (3.31), (3.34) and (3.36) we have,

fRill{V(yi)} = eA?(0) { {T) j

(V(yi)) =

(V(y2)} = 22 (V2(yi)}

{V(y2)) 
= 

tdh?2 (V2(y2)),

{V(y3)) = 23 (V3(y2))

(V(yn)) = 2 (Vn(yn.f))

(V(yn)) =	 (V(yç))

I	 1
{V(yn)) =	 1.	 5

(3.10)

Back substituting the stress-displacement vectors (V(yk)) and (V(yk)}, k=1,...,n+1 in eqn

(3.10) we have,

{
{R+i)1	 1(Ri)1
(T.1.1) I =
	

" 'i' 1. (Ti) j

where S' is the stress-displacement transfer matrix for the entire plate,

3'=e112...	 2221.

(3.11)

(3.12)

Equation (3.11) relates the harmonic plane wave amplitudes on one side of the plate to the

harmonic plane wave amplitudes on the other side of the plate and constitutes four linear

complex equations. The equation is similar in form to eqn (2.95) and yields the reflected and

transmitted plane wave amplitudes tRi), (T+i), if appropriate values of incident wave

amplitudes (Ti),(R+i), are inserted. For example, in order to calculate the reflection and

transmission coefficients due to a longitudinal wave incident from medium 1, it is necessary to
111	 101 .	 .

set (Ti) = i 0 j,and {R+i)= 
tol 

ineqn(3.11).Thesolutioncanthenbecamedoutlna

similar way to the single interface problem, as shown in equations (2.97) and (2.98). Equation



Chapter 3	 71

The reflection coefficient from a multilayered viscoelastic plate

(3.10) is a generalisation of eqn (2.95) derived for a single interface problem, and can be

reduced to eqn (2.95) by setting the transfer matrix 9' to unity.

Reflection coefficient from an aluminium plate in water

Figure 3.4 shows the reflection coefficient from a 3.2 mm thick aluminium plate in water as a

function of frequency computed using the frequency domain approach. The excitation was

assumed to be an infinite harmonic longitudinal wave at normal incidence. The phase velocities

of the longitudinal wave in aluminium and in water are shown in table 3.1.

	

density	 longitudinal velocity	 shear velocity
material	 p (kglm3)	 CL (mis)	 CS (mis)

aluminium	 2820	 6348	 3120

water	 1170	 1490	 10

Table 3.1 Acoustic properties of aluminium and water used in the reflection coefficient calculations.

As can be seen from fig. 3.4 the frequency domain normal incidence reflection coefficient from

an aluminium plate in water is a periodic function with equally spaced minima, the first one

being at zero frequency. This is in perfect agreement with the derivations presented in Appendix

A (see figures 4 and 8 of Appendix A). It can also be shown (see section 4.2 for details) that at

its minima the reflection coefficient from a perfectly elastic aluminium layer in water assumes

zero value. In fig. 3.4 the curve does not touch zero line because the minima of the reflection

coefficient lie in between the points used for the evaluation of the function.

In order to model the spectrum received by a typical 10 MHz transducer in the pulse-echo

mode, it is necessary to multiply the reflection coefficient from fig. 3.4 by a frequency response

function of the transducer. Figure 3.5 shows the reflection coefficient from fig. 3.4 after it has

been 'filtered' by a typical 10 MHz transducer. The inverse Fourier transform of the filtered

reflection coefficient yields the time domain response of the reflected field received by the

transducer (see fig. 3.6). Comparing this theoretically calculated response of the plate with the

measurements (see fig. 1 of Appendix A), good agreement between them can be seen.

Figure 3.7 shows the predicted transmission coefficient of a 3.2 mm thick aluminium plate at

normal incidence and fig. 3.8 shows the transmission coefficient filtered by the the same

frequency response function of the receiving transducer as was used in fig. 3.5. Figure 3.9

shows the time domain response of the transmitted field obtained by inverse Fourier
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transformation of the reflection coefficient spectrum shown in fig. 3.8.

The next four figures, from 3.10 to 3.13, show the reflection and transmission coefficients for

the same 3.2 mm thick aluminium plate submerged in water and excited by an infinite plane

wave at an incidence angle of 0.5 degrees. Figure 3.10 shows the frequency response of the

aluminium plate computed using the infinite harmonic wave coupling approach. Shear mode

excitation is clearly visible here. The small 'glitches' visible in the figure are the through-

thickness shear modes of the plate. Figure 3.11 shows the time domain reflection response

obtained from the inverse Fourier transform of the reflection coefficient windowed by the

frequency response function of a typical 10 MHz transducer. The small humps between the

main longitudinal reflections are the mode converted shear waves within the plate. Figure 3.12

shows the frequency domain transmission response of the plate excited at an angle of incidence

of 0.5 degrees, and again, the small glitches visible in the figure are through-thickness shear

resonances of the plate. Figure 3.13 shows the time domain response received by a typical 10

MHz probe in through-transmission mode.

Reflection coefficient from an epoxy resin plate in water

It has been shown above that the normal incidence response from an aluminium plate in water

can be obtained using either the frequency domain approach, or the time domain analysis,

described in section 3.2 and Appendix A. In both cases it was assumed that the aluminium plate

is perfectly elastic (non-attenuating), for which the time domain response consisted of a family

of equally spaced reflectionsdiffering only in their magnitude and maintaining their shape

throughout the whole time of observation (see fig. 3.6 and fig. 1 of Appendix A). However, if

the mechanical properties of the system are frequency dependent then the time domain approach

is no longer applicable. Indeed, since the reflected and transmitted pulses change their shape as

they propagate and interact with boundaries the derivation presented in Appendix A become

approximate or entirely inapplicable.

The frequency domain approach, however, can cope with these cases accurately and

conveniently by solving equations directly in the frequency domain and, if necessary, the

inverse Fourier transform may be used to obtain the time domain solutions. To illustrate the

idea, a material similar to epoxy resin was chosen, setting the longitudinal phase velocity

frequency dependent and increasing linearly from 2610 rn/s at low frequencies to 2810 m/s at

20 MHz, as shown in fig. 3.14. Attenuation of the bulk longitudinal wave was set to 0.01

nepers, which means that the longitudinal wave is attenuated by factor of e• 0 ' per wavelength.

The dispersion of this system was studied by considering the longitudinal wave pulse shown in

fig. 3.15(a) to be exited in this material. Figure 3.15(b) shows the longitudinal signal which
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would be received 10 mm away from the point of excitation. It is clear that the pulse shape has

been significantly changed.

To show the application of the frequency domain approach to a more complicated case, a 3.15

mm thick epoxy resin plate with frequency dependent material properties was chosen. The

model consisted of the plate loaded by a water half-space on one side and an air half-space on

the other side. The dispersion characteristics of the bulk longitudinal wave, which is the

frequency variation of its phase velocity and the attenuation, were chosen so that comparisons

with the experiments presented in Appendix A could be made. The velocity was set to vary

linearly from 2610 rn/s at very low frequencies to 2690 rn/s at 20 MHz. The attenuation was set

to 0.1 nepers, which means that the wave is decreased by a factor of e 0•' per wavelength.

Figure 3.16 shows the amplitude spectrum of the reflected field at normal incidence, windowed

by a frequency response function of a typical 10 MHz transducer. The spectrum is in a very

close agreement with the measurements shown in fig. 11 of Appendix A. Figure 3.17 shows

the predicted time domain response from the epoxy plate at normal incidence. Changes in the

pulse shape are clearly visible here. Figure 3.17 is in a good agreement with the measured time

domain response discussed in Appendix A and shown there in fig. 10.

3.3.2 Numerical instability of transfer matrices formulation.

Global matrix algorithm

Numerical instability of the wave coupling algorithm

The transfer matrices approach for the solution of the reflection coefficient problem of

multilayered systems seems to be very powerful and neat. However, there are some cases

where the wave coupling algorithm fails to work properly. The method relies on the assumption

that it is always possible to relate the stress-displacement vector on one side of a layer to the

stress-displacement vector on the other side of the layer. During the derivation of the technique

this is done in two stages. Firstly the stress-displacement field on both sides of the layer is

related to the amplitudes of four waves within the layer (eqn (3.2) and (3.3)). Then the plane

wave amplitudes, which are the parameters of the two equations, can be eliminated to yield the

transfer matrix directly linking the stress-displacement conditions on both sides of the layer

(eqn (3.5)), and the relationship is one-to-one. This means that if the stress-displacement vector

on one side of the layer is known then there is only one stress-displacement vector on the other

side corresponding to that vector. In principle, in any physical system this is always the case.

However, when calculations of the stress-displacement field are made on a computer with fmite

precision then in some cases the round-off errors may lead to numerical instability. Let us study

this in more detail.



-(Dc cL'X2
g=e (3.15)
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We learned from the previous chapters that there are at most four plane waves in a layer: two

longitudinal and two shear (see fig. 3.18). For convenience, the waves propagating from the

botom to the top of the layer will be called transmitted waves, and those propagating from the

top to the bottom will be called reflected waves. Let us now consider the case when the

longitudinal type of wave is inhomogeneous in the layer. This means that there are two

inhomogeneous waves in the system: the transmitted longitudinal wave and the reflected

longitudinal wave. These waves are evanescent in the direction perpendicular to the interfaces

of the layer, and the variation of their amplitudes in that direction is given by eqn (3.2),

io)(1a2s2) la a 1 x2
g = e

The requirement for generation of inhomogeneous waves is that a2s2>1, that is,

(3.13)

/2.
ia2s2)= i, where is real.	 (3.14)

In such a case eqn (3.13) becomes,

which describes an exponential decay along the x 2 axis which is frequency dependent.

In order to illustate the situation with some examples let us calculate the rate of decay of

longitudinal waves in an aluminium plate being excited at 20 degrees from water at different

frequencies. We assume a velocity in water cL=1490 mis, and a longitudinal velocity in

aluminium cA1=6400 rn/s. Since the longitudinal critical angle for for aluminium in water is

about 13 degrees, the longitudinal wave is evanescent (inhomogeneous) here. Table 3.2 shows

the magnitude of the longitudinal wave 5 mm away from the interface for frequencies of 1

MHz, 2 MHz, 5 MHz, and 10 MHz assuming that its value is unity at the boundary.

Frequency (4H)	 Amplitude 5 mm away from
interface

	

1.0	 5.08 E-3

	

2.0	 25.83 E-6

	

5.0	 3.39 E-12

	

10.0	 11.51 E-21

Table 3.2. Example of decay of mhomogeneous wave 5 mm away from interface.

As can be seen from the table, the inhornogeneous waves decay very abruptly at higher
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frequencies. Therefore, for any fmite precision of calculations there will be a frequency above

which the amplitude of the wave will decay to a magnitude which can not be distinguished from

zero a short distance away from the interface, as shown schematically in fig. 3.19. This in turn

means that such an inhomogeneous wave will strongly contribute to the stress-displacement

field on one side of the layer while it will effectively not be present on the the other side at alL A

significant change in the wave amplitude would therefore make a substantial difference in the

stress-displacement field on one side of the layer while making no difference on the other side.

This violates the one-to-one relationship between the stress-displacement vectors at the two
boundaries of the layer. From the numerical point of view, the transfer matrix 2 will rapidly

become ill conditioned making calculations erroneous or impossible, for any finite precision of

calculations. Figure 3.20 shows the reflection coefficient from a 5 mm thick aluminium plate in

water computed at an excitation frequency of 6 MHz, using the 64 bit floating point precision of

calculations. From the graph it can be seen that calculations become unstable for angles above

20 degrees.

Global matrix algorithm

A number of researchers have proposed solutions to the instabilty problem of the Thomson-

Haskell technique, mainly for seismological applications (see for example Dunkin 1965, Abo-

Zena 1979). In the approach presented below, the reflection coefficient of multilayered systems

is calculated without using transf'r matrices at all. In order to do so we will avoid the

elimination of wave amplitudes in our derivations. The method derived here is similar to that

proposed by Knopoff (1964). However, an important development is introduced. Knopoff

retained the spatial origin for all wave components in each layer as the top of the layer. This

gave him an improvement in stability over the transfer matrices method but the numerical

instability could still occur at high frequency-thickness products. The method proposed here

removes the instability entirely by placing the origin of all waves at their entry to the layer. To

the author's knowledge this is the first time that this has been proposed.

Let us, once again, consider a multilayered system shown schematically in fig, 3.1 and the kth
t

layer shown in fig. 3.21. In the derivations which will follow here the stress-diplacament field

is expressed in terms of the amplitudes of four waves present in the layer. Let us assume that
the waves propagating in the upward direction in the layer will be expressed in terms of (xi ,x)

coordinates, while the waves propagating 'down' will be expressed in the (x'j ,x) coordinate

system.

Making use of eqn (3.1) the stress-displacement field at the top boundary of the kth layer can be

expressed as,



where,

A = (1cx2s2) la,	 B = (1f32s2)'a, C = 1-2f32s2,

- iwAa ' dk 	 iaBf'dk
g—e	 , g—e
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and at the bottom of the layer,

iwpaCg1,
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(3.17)

(3.18)

dk is the thickness of the kth layer (see fig. 3.21) and can can be expressed in terms of global

coordinates as,

dk = Yk - Yk-1 .	(3.19)

Using Knopoffs technique, the stress-displacement field at the bottom boundary of the layer is

given by eqn (3.17), while the stress-displacement field at the top boundary of the layer is

calculated as,

-11o)paCg

2iopsf2Ag,'

asg

-1-Ag

2jwpsf32Bg	 iO)p aCg1,

	

iopCg	 2iaps2A,

	

-Bg'	 asg1,

	

-sg'	 Ag

-2iwps2B;	 a22

icopC;

B;	 TpI	
Ui

-ps;	 T5	 U2 top

(3.20)

Let us assume that one of the types of waves is inhomogeneous in the layer, for example the

longitudinal waves (see figures 3.18 and 3.19). As has been shown above (see table 3.2), the
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amplitudes of inhomogeneous waves decay very abruptly across the plate, expecially for high

frequencies of excitation, as given by eqn (3.15). Therefore, the amplitude of g calculated

over the entire thickness of the layer, given by eqn (3.18), becomes very small. The amplitude

of the inverse of g therefore becomes very large. This can lead to numerical instability when

calculating g terms in eqn (3.20). This is not the case when eqn (3.16) is used instead.

The stress-displacement field at a boundary between kth and k+lth layers (top of the kth layer),

given by eqn 3.16, can be expressed in a more concise form as,

(V(yk)) = tAlk , {	 }
where (V(yk)) = J'l.

ii(yk)J

(3.21)

The same stress-displacement vector can be expressed in terms of plane waves in the k+lth

layer as,

I
{V(yk)) =	 1. (Tk^1} I (3.22)

If the stress-displacement field is continuous across the boundary then combining eqn (3.21)

and (3.22) we have,

I (R^i) 1 =(0).	 (3.23)

Here the independent variables are the amplitudes of the plane waves in the neighbouring

layers.

Sometimes it is useful to incorporate a spring boundary condition between two layers to

account for some imperfections at the boundary between them (see sections 1.4.1 and 2.3.3 of

this thesis for more details). If there is a spring boundary condition between the kth and k+lth

layer (see fig. 3.3) then the stress-diplacement field is not continuous across the boundary and

equations (3.16) and (3.17) become,

I (Rj) 1
fV(yk-)) =	

, 1. (Tk) I

and,

I (Rk.)
(V(yk)} = t/ik+1 hot 1 (Tk+1) I

(3.24)

(3.25)

where (V(yk)) and (V(y)) are the stress-displacement vectors on the bottom and top of the

interface respectively. In order to link the two vectors the spring model has to be introduced.



I (R+i) 1k (V(yk)} -	 1. (Tk+l) .i = (3.28)

and,
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This can be done by utilising the boundaiy stiffness matrix introduced in section 2.3.3 and used

in section 3.3.1 (see eqn (3.9)),

(V(yk)) = k {V(yk)). 	 (3.26)

Combining equations (3.24), (3.25) and (3.26) we can express the discontinuity across

boundaries in the form of two equations as follows,

{	 } - (V(yk)) = (0), 	 (3.27)

Now, using equations (3.23), (3.27) and (3.28), and setting the index k=1,...,n , we are in

position to write the system of equations for the entire multilayered plate.

ji	 {(R1)l'top (Ti) J - {V(y)) = (0)

P 1 (V(yi))-€A(	 {(R2))2bot (T2) I =f)

{ }? } - (V(y2)) = (0),

2 (V(y2)) - 1A1	
{ 

(Ri) •1
3bot

{ I:? I - ( V(yç)} = (0),

{ (R+) 1
fl (v(yn))A(fl+i bO 	 (T+1)J =(0)

The first equation of the system of equations (3.29) can be re-written as,

/aRl (R1) - (V(y1)) = - A6 (Ti),

(3.29)

(3.30)

where ' 'R 1 and 1T1 are 4 x 2 sub-matrices of	 . Similarly, the last equation of the

system of equations (3.29) can be expressed as,

fV(y)) - t aFn+1 (T+) = "Rn+i (R1) ,	 (3.31)
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where	 and	 are 4 x 2 sub-matrices of A(1 
bot 

Now, using eqn (3.30) and

(3.31), the system of equations (3.29) can be expressed in matrix notation as given by eqn

(3.32) below.

RI	 0	 0	 0	 0	 0	 0	 0

o	 0	 0	 0	 0	 0	 0

o	 0	 2	 0	 0	 0	 0	 0

o	 0	 0	 2 VW3 o	 0	 0	 0

o	 0	 0	 0	 0	 0	 ...t	 -UI	 0

o	 o	 0	 0	 0	 0	 0	
fl	 Tn+1

TI (Ti)

0

0

0

0

Rn+l (Ri)

(3.32)

This is a system of 8n linear complex equations with 8n unknowns and yields the reflected and

transmitted plane wave amplitudes {R1), {T+i) and also all the plane wave amplitudes in the

intermediate layers of the plate (Rk), (Tk), k=2,...,n if appropriate values of incident wave

amplitudes {T1), (R+i), are inserted. To calculate the reflection and transmission coefficients

due to a longitudinal wave incident from medium 1, it is necessary to set (T1} = { 
j }, 

and
101	 .

{R+i) = 1 0 j on the nght-hand side of equation (3.32). To calculate the reflection and

transmission coefficients due to a shear wave incident from medium 1, it is necessary to set

(T1) = {?) , and fR+i) = { } on the right-hand side of equation (3.32).

Figure 3.20(b) shows the reflection coefficient from a 5 mm thick aluminium plate in water at 6

MHz using the global matrix algorithm. This graph corresponds exactly to the case of fig.

3.20(a) where the wave coupling approach was used. It can be seen from fig. 3.20(a) that the

global matrix procedure provides a stable solution to the problem.

3.4 The reflection coefficient of the finite beam from the multilayered,

viscoelastic plate

In section 2.4.3 the reflection of the finite beam from a single interface between two semi-

infinite half-spaces was discussed in detail. It was shown that the incident beam from the finite-

sized transducer can be decomposed into a series of plane waves, all of them having the same

frequency but each of them propagating in different directions (see fig. 3.21). This plane wave

decomposition can be achieved using eqn (2.120) using the forward Fourier transformation.
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After the decomposition of the incident field into plane waves, evaluation of the reflected field is

relatively straightforward. Indeed, the magnitude and phase of each of the reflected plane waves

can be calculated using the global matrix reflection coefficient algorithm described in detail in

section 3.3.2 and expressed in eqn (3.32). Since the incident field can be formed as the sum (or

an integral) of the incident plane wave components, then the reflected field is the sum (or an

integral) of the reflected plane waves. The summation of the plane waves can be performed

using the inverse Fourier transformation.

As one can see, the solution procedure for both a single interface and a multilayered plate

follows exactly the same steps, namely decomposition into plane wave components (forward

Fourier transformation), evaluation of the amplitudes and phases of each reflected plane wave

component (reflection coefficient), and finally the summation (synthesis) of the reflected plane

waves (inverse Fourier transformation). The only difference between the single and the

multilayered case is in the evaluation of the plane wave reflection coefficient. In chapter 2,
where a single interface problem was considered, the plane wave reflection coefficient, R(k1),

was evaluated using eqn (2.98), and the summation of all plane wave components performed

using eqn (2.134). When a multilayered viscoelastic plate considered, eqn (3.32) rather than
(2.98) have to be employed to calculate the plane wave reflection coefficient R(k1). The

summation of the reflected plane waves is then conducted using eqn (2.134), as in the case of

the single interface problem.

The Fourier decomposition and synthesis method used in this section and in section 2.4.3 can

be implemented in either two or three dimensional space. All the derivations presented here
have been conducted in two dimensions, the (x i, x2) space, assuming plane strain. This, for

example, means that the transmitter (see for example fig. 3.22) has fmite dimensions in the (xi,

x2) plane while it extends infmitely in the direction perpendicular to the (x i, x2) plane.

For the purposes of this thesis a computer program was written, capable of solving the problem

of the finite beam reflection from multilayered viscoelastic plates in two dimensions. The

solution procedure follows closely the theory presented in this chapter.
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3.5 Conclusions

It has been shown in this chapter that, in order to predict the response of an elastic

nondispersive plate to the normal incidence pulse excitation, two different approaches can be

taken. The first one is to obtain the time domain response of the plate by calculating the time

delays and amplitudes of echoes coming from the plate. The response of the plate in the

frequency domain can then be obtained by performing the Fourier transformation of the time

domain signal. This technique was developed in the early stages of this project and is presented

in Appendix A. The second approach is to consider the behaviour of the plate under a harmonic

plane wave excitation and therefore to calculate spectrum of the plate response of the system

directly in the frequency domain. The time domain signal can then be obtained by performing

the inverse Fourier transformation of the calculated spectrum.

The frequency domain solution procedure based on the Thomson-Haskell method has been

developed and compared with the time domain approach by studying the normal incidence

response from an aluminium plate in water. Comparison between the two methods showed, as

expected, exact agreement.

It has been shown in this chapter that the time domain approach is only applicable in cases

when the material properties are independent of the frequency of excitation (nondispersive

materials). The frequency domain approach, however, is able to cope with dispersive and

attenuating materials and therefore is more general and more suitable for the purposes of this

thesis.

It has been shown that when the frequency of excitation is high and there are inhomogeneous

waves present in a thick plate then the Thomson-Haskell technique becomes numerically

unstable and produces erroneous results. An alternative approach, the global matrix technique,

has been employed to solve the reflection coefficient problem.

Finally, the problem of the finite transducer excitation has been addressed in this chapter. The

solution procedure, introduced in chapter 2, has been extended here for the case of multilayered

viscoelastic plates. The theory presented in this chapter, involving spatial Fourier

decomposition, the global matrix reflection coefficient technique and the inverse Fourier

transformation, has been used to develop a computer program to form a theoretical basis for

comparisons with the experimental investigations presented further in this thesis.
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Fig. 3.1 Coordinate system for the multilayered plate.
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Fig. 3.2 Plane waves in the kth layer.
To simplify deriavtions, a local coordinate system has
been introduced with the origin at the bottom of the layer.
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xl

Fig. 3.3 Spring boundary conditions between two layers.
Normal and transverse stress at the boundary is
proportional to the displacement discontinuity
across the interface.
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V-

Fig. 3.18 Schematic diagram of transmitted and reflected waves within
a layer in the case when longitudinal waves are inhomogeneous
and shear waves are homogeneous.
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V-

Fig. 3.19 Jnhomogeneous waves in the case of higher frequencies
of excitation. Large amplitudes on one side of the layer
decaying to negligible values across the thickness of the
layer.
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-1.00
0.00	 Angle of incidence (degrees)	 45.0

0.00	 AngIe of incidence (degrees) 	 45.0

Fig. 3.20 Reflection coefficient from the 5 mm thick aluminium plate in water
at a frequency of 6 MHz. (A) Thomson-Haskell transfer matrices algorithm,
(B) global matrix technique.
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bottom boundary	 k-i layer

xl

global
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system

Fig. 3.21 Plane waves in the kth layer.
To improve numerical stability two local coordinate systems
have been introduced with the origins at the bottom and the
top of the layer.
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Fig. 3.22 Decomposition of the radiated field into plane wave components
in order to solve the finite beam reflection problem.
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CHAPTER 4

Theoretical predictions of the reflection coefficient
from thin layers

4.1 Introduction

This chapter presents a systematic study of the reflection of ultrasonic waves from layers

between semi-infinite half spaces. The intention of this chapter is to provide more insight into

two important problems of ultrasonic nondestructive testing. The first one is the problem of the

detectability of the presence of thin layers, especially embedded thin layers. Here we would like

to know under what circumstances it is possible to detect the presence of a layer of given

thickness and material properties. The second problem is the question of the ultrasonic

evaluation of the properties of thin layers. In such cases we would like to know under what

conditions it is possible to monitor differences in the thickness of a layer or its mechanical

properties. In order to answer these questions, the multilayered viscoelastic plate theory

developed in chapter 3 can be used. To gain better understanding of the physics involved, a

normal incidence reflection theory is derived specifically for a single layer, and later in the

chapter a thin layer approximation theory is derived as a simplification of the matrix formulation

of chapter 3.

The notion of a viscoelastic layer has already been introduced and the exact form of the normal

incidence reflection coefficient from an aluminium plate in water was given in Appendix A. In

section 4.2, the general case of the normal incidence reflectivity from elastic layers is solved.

Simple formulae are derived giving a considerable insight into the behaviour of the reflection

coefficient at normal incidence.

Section 4.3 applies the multilayered plate theory developed in chapter 3, and the simple theory

given in section 2.3, to the case of thin liquid layers between two solid half-spaces. This

section is concerned with the detectability of the presence of liquid layers and the evaluation of

their material properties using ultrasound.

Section 4.4 extends the investigations started in the previous section to the case of thin solid
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layers. The problems of the detectability of the presence of the layers as well as evaluation of

their material properties are addressed here.

A stress-displacement transfer matrix formulation of the mechanical behaviour of layers has

been given in chapter 2. In section 4.5 the concept of a thin viscoelastic layer is introduced.

This is achieved by expanding a stress-displacement transfer matrix in terms of the layer

thickness. Under such an approximation the complicated stress-displacement transfer matrix

considerably simplifies, offering us more insight into the physics of the thin layer reflectivity.

In this section the comparison between the exact and the approximate formulation is given in

order to show the limits of applicability of the simplified formulation.

Section 4.6 repeats the main conclusions of the chapter.

4.2 The reflection coefficient from solid and liquid layers at normal incidence

4.2.1 General

In chapter 3 we were concerned with the response of multilayered viscoelastic media. As an

example, the normal incidence response from an aluminium plate was studied. In Appendix A

the normal incidence longitudinal reflection coefficient from an aluminium plate in water was

derived as a Fourier transform of the time domain response. In Appendix A and section 3.3 we

learned (see fig. 7 of Appendix A and also fig. 3.4) that the normal incidence reflection

coefficient curves feature equally spaced minima at frequencies which correspond to the

resonant frequencies of the aluminium plate in vacuum, the depth of the minima depending on

the ratio between the front face reflection from the plate and a series of the reflections from the

back of the plate.

If the plate is to be between two dissimilar half-spaces, then obviously the balance between the

front face and back face reflections change, affecting the depths of the minima. In this

subsection we would like to answer what governs the shape of the normal incidence reflection

coefficient curves from layers separating half-spaces of different mechanical properties. In

order to do so we take the frequency domain approach introduced in chapter 2 and developed

further in section 3.3. In this approach we will consider the steady state response of the layer to

a harmonic normal incidence excitation. For the sake of the argument we will consider the

longitudinal excitation bearing in mind that the same analysis applies to the normal incidence

shear wave (if the system can support shear wave propagation).
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Consider a system consisting of a layer separating two half-spaces (see fig. 4.1), being excited

by a longitudinal wave in the direction perpendicular to the the layer. Using the notation

introduced in chapter 2, the displacement field in the left half-space (medium number 1) can be
expressed as the sum of two waves: an incident wave of amplitude T 1 , and reflected one of

amplitude R 1 . In the layer (medium number 2) we have transmitted and reflected waves of

amplitudes T2 and R2, respectively. In the right-hand side half-space, the displacement field

will consist of only a single transmitted wave of amplitude T3.

In general, a longitudinal plane wave propagating in a direction along the x coordinate can be

expressed as,

u(x,t) = Ac
iw(x/a-t)	

(4.1)

where u s the displacement field in the x direction, A is the amplitude, co is the frequency and cx

is, in general, a complex value characterising the velocity and damping of the wave. When a is

real then the wave propagates without attenuation and a = c, where c is the phase velocity of

the wave. The normal stress in the x direction can be calculated from the standard stress-strain

equation of the form,

a=Ec, where
	 au	

(4.2)

and E is an elastic constant, satisfying the relationship,

E = pa2,

where p is the density of the medium. Substituting eqn (4.1) into (4.2), we have,

au	 iC)
= - u(x,t),

jX a

(4.3)

(4.4)

icoE
a(x,t) = - u(x,t).

cx

Substituting eqn (4.3) into (4.5), we have,

a(x,t) = icoz u(x,t),

where,

z = pa,

(4.5)

(4.6)

(4.7)

is defined as an impedance of the medium, and relates the amplitude of the normal stress to the



(4.8)

(4.9)
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velocity of the wave.

Using equations (4.1) and (4.6), we are now in position to describe the displacement and stress
-'cot

fields in the three media of fig. 4.1. Omitting the common time dependent term e , for

convenience, we can express the displacement and the stress fields in medium 1 as,

icDx/a1	 -io)x/a1
u 1 (x)=T1 e	 +R1e

icOx/cZ1	 -icox/cz1
1 (x)= icoz 1 (T1 e	 -R1e

Similarly, for the layer, we have,

icox/a2	 -iO)x/cX2
u2(x) = T2 e	 +R2e

1o)x/a2	 -io)x/a2
a2(x) = io)z2 (T e	 - R2 e	 ).

For the right-hand side half-space, we have,

iwx/a3
u3(x)=T3e

iwx/03
a3(x) = icoz3 T3 e

(4.10)

(4.11)

(4.12)

(4.13)

In order to solve the reflection coefficient problem it is necessary to 'connect' the stresses and

displacements on both sides of the boundaries, so that the stress and displacement fields are

continuous everywhere in space.

Using equations (4.10) and (4.11) we can calculate the stresses and displacements at both

interfaces in terms of the amplitudes of the waves in the layer. At the left boundary of the layer,

x =0, and we have,

u(0) = T2+R2	 (4.14)

a(0) = iwz2 (T2 - R2),	 (4.15)

and at the right boundary, x = L, we have,

u(L) = T2 g + R2
	 (4.16)



u(L) = T3y, (4.19)

(L) = iwz3 T3 y, (4.20)

where,

icoLja3
y=e (4.21)
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a(L)= icoz2 (T2 g-R2 g 1 ).	 (4.17)

In accordance with the notation introduced in chapter 2 (see eqn (2.77)), g accounts for the

exponential term in equations (4.16) and (4.17),

- icoLla2	
(4.18)

For the purpose of the further derivations, let us assume that the layer is perfectly elastic, that is

a2 = c2, where c2 is the phase velocity of the longitudinal wave in the layer. For such a case

the argument in the exponential term of eqn (4.18) becomes real, and the magnitude of g is

unity.

Using equations (4.12) and (4.13), the displacements and stresses at the right-hand side

boundary of the layer can be expressed in terms of the transmitted wave in medium 3 as,

is the term arising from the offset of the coordinate system with respect to the right-hand side

boundary by distance L. We could, for example, describe the stress-displacement field in
medium 3 in its own local coordinate system having origin at x = L, and therefore removing 'y

from equations (4.19) and (4.20).

Having written equations describing the stresses and displacements for each of the three media

present in the system, we are now in position to derive the reflection coefficient from the layer.

This can be achieved by setting the incident wave amplitude, T 1 , to unity, and equating the

corresponding equations across the left-hand side boundary and the right-hand side boundary

as we require the stress-displacement field to be continuous everywhere in space.

4.2.2 Reflection coefficient at the resonant frequency of the layer

Let us assume that the incident wave drives the system at the resonant frequency of the layer
(o =	 )• Using eqn (16) of Appendix A we can express °res in terms of the layer thickness,

L, and the phase velocity, c2, of the wave within the layer,
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ltc2
o: res = L m ,	 (4.22)

where m is the resonance number. Now, using eqn (4.22) we can express the exponential term

of eqn (4.18) as follows,

- iO)resL/C2 - J 1 when m is even,
g—e	 - l.-lwhenmisodd (4.23)

Resonance mode number is odd

If the resonance number, m, is odd then, by eqn (4.23), g = -1, and equations (4.16) and

(4.17) become,

u(L) = - ( T2+R2),	 (4.24)

a(L)= -iwz2(T2-R2).	 (4.25)

Using equations (4.14) and (4.15) we can relate the stress and displacement fields on both

sides of the layer as,

u(L) = - u(0),
	 (4.26)

a(L) = - a(0).
	 (4.27)

Equations (4.26) and (4.27) reveal a very interesting feature of the stress-displacement field at

the frequency 0= When the frequency of the excitation is equal to that of an odd mode of

the layer, then the relationship between stresses and displacements on both sides of the layer is

independent of value of T2 and R2. This means that the relationship is independent of the

mechanical properties of the media on both sides of the layer as well as independent of the

impedance of the layer itself.

Using equations (4.26), (4.27), and (4.8), (4.9), (4.19), (4.20), we are now in position to link

the stress and displacement fields on both sides of the layer and obtain the relationship between

the incident, reflected and transmitted wave,

T 1 +R1 =-T3y,	 (4.28)

iQszl(T1R1)i(0resz3T3Y
	

(4.29)

Dividing both sides of eqn (4.29) by ico, 5, and substituting eqn (4.28) into (4.29) we have,



(4.32)

(4.33)

(4.34)

(4.35)
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z 1 (T1 -R 1 )= z3 (T1 +R 1 ).	 (4.30)

In order to obtain reflection coefficient, we have to putT1 = 1, and calculate R 1 , which gives,

z -z

res - 1 + Z3
	 (4.31)

As we can see from eqn (4.31), the value of reflection coefficient is independent of the

impedance of the intermediate layer.

Resonance mode number is even

When the resonance number, m, is even then g = 1, and equations (4.16) and (4.17) become

u(L) = T2+R2

a(L)= icoz2(T2-R2).

Using equations (4.14) and (4.15) we have,

u(L) = u(0),

a(L) =

When the frequency of the excitation is equal to that of an even mode of the layer, then the

relationship between stresses and displacements on both sides of the layer is independent of

value of T2 and R2 and given by equations (4.34) and (4.35). Following the same steps as

shown in equations (4.28), (4.29), and (4.30), we arrive at the same value of reflection

coefficient as for the case of the odd-numbered mode frequency, given by eqn (4.31).

No layer between the half-spaces

If the layer between the half-spaces was removed, then we could link the stresses and

displacements in medium 1 to those of medium 3 directly. This is exactly what is stated in

equations (4.34) and (4.35). Therefore the value of reflection coefficient expressed in eqn

(4.31) is also valid for the case of two semi-infinite media without the presence of the layer.

Therefore, we can state that when the frequency equals the resonant frequency of the layer, the

layer becomes entirely transparent to the acoustic waves, and the reflection coefficient is entirely

defmed by the impedances of the materials on both sides of the layer. This statement is only
valid for a perfectly elastic layer, that is when a2 = c2.



(4.38)

(4.39)
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4.2.3 Reflection coefficient at the frequency halfway between two

consecutive resonant frequencies of the layer

Another interesting case occurs when the frequency of excitation is halfway between two

consecutive resonant frequencies of the layer. Let us investigate this case in more detail.

Using eqn (4.22) the frequency halfway between the mth and m+l th resonant frequency o the

layer can be expressed as,

7tC2
°halfr (m+).

When m is even then, using eqn (4.23), the exponential term of eqn (4.18) becomes,

g=i, and g=-i

Substituting eqn (4.37) into equations (4.16) and (4.17), we have,

u(L) = i (T - R2),

c(L)= -coz2(T2+R2).

(4.36)

(4.37)

Using equations (4.14) and (4.15) we can relate the stress and displacement fields on both

sides of the layer as,

u(L) =

	

	
(4.40)

(0z2

a(L) = - coz2u(0).	 (4.41)

Again, we have obtained the relationship between the stresses and displacements on both sides

of the boundary as functions independent of the amplitudes of the waves within the layer. We

can use this relationship to link the incident, reflected and transmitted waves to calculate the
reflection coefficient at the frequencies ° = 0a.f• Using equations (4.40), (4.41), and (4.8),

(4.9), (4.19), (4.20), we therefore have,

iz 1 (T - R 1 )
T3y—	 z2

iz3 T3 y= -z2(T1+R1)

Substituting eqn (4.42) into (4.43), we have,

(4.42)

(4.43)



/ti,d-r	 grope_f fe S

L., e-ç e -6-n ke-,

(' ('7g?)

?Z.. e.

-c	 -

7VHr'-S.'c	 Es 2 d1 
/t1A?''

/

(v	 v/	
Y0k)



Chapter4	 112

Theoretical predictions of the reflection coefficient from thin layers

zi	
)= — (T +R1),	 (4.44)(T1 -R 1 	 3	 1

and after setting T 1 = 1, and simple algebra, we obtain the following expression for the

reflection coefficient at the frequency 0) =

2
z 1 z3 - z2

Rhalf=	 2
	 (4.45)

z 1 z3 + z2

It can be easily shown that eqn (4.45) holds also in the case when the index m in eqn (4.36) is

odd, following the steps shown in equations (4.37)-(4.44).

Equation (4.45) gives us a very simple expression for the value of the reflection coefficient for

the frequencies halfway between the resonant frequencies of the layer. It can be easily shown

that eqn (4.45) holds for all frequencies ha]fway between the resonant frequencies of the layer.

4.2.4 Examples

Equations (4.22), (4.31), and (4.36), (4.45), can be very useful in predictions of the normal

incidence reflectivity from layers separating two half-spaces because they are simple to use. Let

us then apply these equations to some simple cases. We will calculate the normal incidence

longitudinal reflection coefficient from a 100 .tm thick aluminium oxide layer between half-

spaces of various mechanical properties. The material properties used in the calculations are

shown in table 4.1, and they are similar to those used in chapter 7, where the ultrasonic

reflectivity from aluminium/epoxy joints are discussed in more detail (see tables 7.1 and 7.2).

longitudinal	 longitudinal

	

material	 velocity	 impedance
p (kg/rn3)	 Ci (mis)	 zL (kgJm2s)

aluminium	 2820	 6330	 17.85 E6

aluminium oxide	 1170	 10400	 12.17 E6
(70 %porosity)

epoxyresin	 1170	 2610	 3.05E6

	

waler	 1000	 1490	 1.49 E6

Table 4.1 Acoustic properties of materials used in calculations.



Chapter4	 113
Theoretical predictions of the reflection coefficient from thin layers

Using eqn (4.22) and the values in table 4.1 we can calculate the first resonant frequency for

the 100 p.m thick oxide layer, f = 52.0 MHz. Figure 4.2 shows the amplitudes of the normal

incidence longitudinal reflection coefficients (RLI) for two different systems. Curve 1 has been

computed for a waterll00 p.m thick oxide/water system, while curve 2 has been calculated for a

water/100 p.m thick oxide/ epoxy system. As can be seen from the figure, at the resonant

frequencies of the layer (0.0 MHz, 52.0 MHz, and 104.0 MHz) the RLL coefficient reaches

local minima, the value of which can be calculated from eqn (4.31). Halfway between the

resonant frequencies of the layer (26.0 MHz, and 78.0 MHz) the curves attain shallow maxima.

The amplitudes of RLL can be computed at those frequencies using eqn (4.45). The first two

rows of table 4.2 show the results of calculations using equations (4.31) and (4.45).

Rres	 Rf
system	

(kg/m2s)	 (kg/m2s)	 (kg/m2s)	 (eqn 431)	 (eqn 4.45)

watex/
oxiie/	 1.49 E6	 12.17 E6	 1.49 E6	 0.0	 - 0.970
water
water/

1.49 E6	 12.17 E6	 3.05 E6	 - 0.344	 - 0.940
epoxy___________ ___________ ___________ ___________ ___________

aluminium/
oxi&/	 17.85 E6	 12.17 E6	 3.05 E6	 0.708	 - 0.462
epoxy___________ ___________ ___________ ___________ ___________

aluminium/
oxicle/	 17.85 E6	 12.17 E6	 1.49 E6	 0.846	 - 0.696
water

Table 4.2 Amplitudes of Rjj , coefficient at f frequency and f frequency.

When the impedances of the two half-spaces are equal (ie z = z3) then, by eqn (4.31), the

reflection coefficient at the resonance frequencies of the layer is null. This indeed is the case for

the water/oxide/water system (see fig. 4.2). At 0.0 MHz, 52.0 MHz, and 104.0 MHz the RLL

coefficient decreases sharply to zero. For frequencies in between the resonant ones, the RLL

curve is close to unity. From table 4.2 it can be seen that the impedance of the layer is much

higher than that of water (zi = Z3, z <<z2), and using eqn (4.45) one can clearly see that the

Rhaif will be dominated by the impedance of the layer, which results in the amplitude being

close to unity. Exactly the same behaviour of the reflection coefficient can be observed in fig.

3.4, which was computed for the water/aluminium plate/water system.

Curve 2 of fig. 4.2 has been computed for a system consisting of water/100 p.m thick

oxide/epoxy. The resonant minima appear at exactly the same frequencies as for the curve 1,

but are much shallower here than those of the curve 1, and they reach the value of 0.344, which
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is the reflection coefficient of the water/epoxy system. The maximum values of the reflection

coefficient can be found at frequencies eqUal to half' where the amplitude of RLL is 0.940.

From fig. 4.2 and table 4.2 it can clearly be seen that the amplitude variation of RLI, coefficient

for the water/oxide/epoxy system is about half of that of the reflection coefficient of the

water/oxide/water system.

Let us look at another example of the normal incidence reflectivity from the 100 jim thick oxide
layer. Figure 4.3 shows RLL coefficients for two different systems: curve 1 for an aluminium/

100 p.m thick oxide/water system, and curve 2 for an aluminium/i 00 p.m thick oxide/epoxy

system. The calculations for the RLL coefficient at res and ha1f for these two systems occupy

the last two rows in table 4.2. From the table 4.2 it can be seen that the reflection coefficients

do not always attain minima at the resonant frequencies of the layer.

The two examples presented in figures 4.2 and 4.3 show that the normal incidence reflectivity

from layers varies substantially from one case to another and depends not only on the property

of the layer itself but also on the impedances of the media on both sides of the layer. Let us

therefore investigate the conditions governing the behaviour of the reflection coefficient curves.

Let us assume for the time being that the impedance of medium 1 is bigger than that of medium

3, that is, Z3 <zi. From eqn (4.31) it can be seen that in such circumstances Rres is positive.

This is, for example, the case when the aluminium/layer/epoxy system is considered (see table

4.2). The impedance of the intermediate layer Z2 can have, in general, any positive value. Let

us identify different cases Z2 can satisfy.

Casel z3<zl<z2,thenRres<-Rhalf

When the impedance of the layer in bigger than the impedances of both half-spaces, then

using eqn (4.31) and (4.45), one can show that Rres <Rhaii, or in other words, the amplitude

of the reflection coefficient reaches minima at the resonant frequencies of the layer (including

zero frequency), and attains maxima at the frequencies exactly halfway between the resonant

frequencies.

Case2 z3 <z 1 =z2, then Rres=-Rhalf

When the impedance of the layer is equal to the larger impedance of the two half-spaces, then it

is easy to show that Rres = - Rhaif. In such a case the amplitude of the reflection coefficient

becomes a straight horizontal line.
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Case 3 z3 <z2 < z 1 , and z 1z3 <z, then - Rhaif < R

When the impedance of the layer is between the impedances of the half-spaces, then

- Rhajf < Rres, which means that the amplitude of the reflection coefficient reaches maxima at

the resonant frequencies of the layer (including zero frequency), and attains minima at the

frequencies exactly halfway between the resonant frequencies.

Case 4 z3 <z2 < z and z 1 z 3 = z, then Rhaif =0

When the impedance of the layer is between the impedances of the half-spaces, then there is a

special case when z 1 z 3 = z. Looking at eqn (4.45) one can see that Rhaif = 0. In such a case

the minima, which occur between the resonant frequencies of the layer, touch the zero line. The

maximum values are found at the resonant frequencies (including zero frequency).

Case 5 z3 <z2 <z 1 , and z < z 1 z3 , then Rhaif < Rres

This is a similar case to that of No 3, but Rh changes its sign and becomes positive. Here the

amplitude of the reflection coefficient has maxima at the resonant frequencies of the layer

(including zero frequency), and reaches minima at the frequencies exactly halfway between the

resonant frequencies.

Case 6 z2 = z 3 <z 1 , then Rres = Rhalf

This case is similar to that of No 2, but Rhaif is positive rather than negative. When the

impedance of the layer is equal to the smaller impedance of the two half-spaces, then the

reflection coefficient is frequency independent and equal to that of the two half-spaces without

an intermediate layer.

Case 7 z2 <z 3 <z 1 , then Rhaif < Rres

When the impedance of the layer is smaller than the impedances of both half-spaces, then the

amplitude of the reflection coefficient reaches minima at the resonant frequencies of the layer

(including zero frequency), and attains maxima at the frequencies exactly halfway between the

resonant frequencies. This case is similar to that of No 1, but here Rhaif is positive.

Let us illustrate all the cases above with a simple example. The system we will use for the

parametric study is the aluminium/100 .tm thick layer/epoxy resin system, the mechanical

properties of the half-spaces being the same as those listed in table 4.1, therefore the

longitudinal impedances of the half-spaces are, z = 3.05 E6 kg/m2s, and z3 = 17.85 E6
kg/m2s. The mechanical properties of the layer are based around those of the 70 % porous
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aluminium oxide, whose properties are given in table 4.1. The longitudinal phase velocity of

the layer is kept constant to maintain the resonant frequencies at the same position for all cases.

In order to vary the impedance of the layer, we have chosen to alter its density to suit our

purposes. Table 4.3 shows variation of the density of the layer, its longitudinal impedance and

the resulting amplitude of the longitudinal reflection coefficient. The density of the layer was

chosen so that the impedance of the layer falls into the seven cases discussed above, case

numbers in the table corresponding to those above.

CL	 ZL	 R	 R(	 "'	 (kgn3)	 (kg/m2s)	 (kg/m2s)	 (eqn 4.31)	 (eqn 4.45)

1	 200	 10400	 2.08 E6	 0.708	 0.853

2	 293	 10400	 3.05 E6	 0.708	 0.708

3	 480	 10400	 4.99 E6	 0.708	 0.373

4	 709	 10400	 7.37 E6	 0.708	 0.00

5	 1000	 10400	 10.40 E6	 0.708	 - 0.330

6	 1716	 10400	 17.85 E6	 0.708	 - 0.708

7	 3000	 10400	 31.20 E6	 0.708	 - 0.898

Table 4.3 Amplitudes of Rjj coefficient at f frequency and f frequency for different impedances of
the layer between aluminium and epoxy half-spaces. Thickness of the layer is 100 I.un.

Figures 4.4(a) and 4.4(b) show the reflection coefficient curves corresponding to the seven

cases of table 4.3. It can clearly be seen from the figures that all the curves start at zero

frequency with an amplitude of 0.708. This is the amplitude of the reflection coefficient at the

frequencies corresponding to the resonant frequencies of the layer in vacuum, denoted as res•

All the curves meet again at a frequency of 52.0 MHz, the first resonant frequency of the layer,

then at 104.0 MHz, the second resonant frequency, and so on. The biggest difference in

amplitude between the cases can be seen at the frequencies exactly between the resonant

frequencies, denoted as half• From figures 4.4(a) and 4.4(b) it can clearly be seen that if the
amplitudes of the reflection coefficient at frequencies res and ha1f is known then the shape of

the reflection coefficient curves can be quickly and conveniently predicted. The formulae to

calculate these values are given in equations (4.22), (4.31), (4.36) and (4.45).
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4.3 The reflection coefficient from thin liquid layers

This section is concerned with ultrasonic reflectivity from thin liquid layers between two solid

half-spaces. This case is very important in our investigations because liquid can be considered

as a limiting case of a very heavily deteriorated interface between epoxy and aluminium. In such

cases it is usually assumed that the normal stiffness across the interface only changes slightly

while the reduction in shear stiffness across the boundary is significant (see Rokhlin and

Marom 1986, Rokhlin et a!. 1990). This means that the deteriorated interface, which from the

geometrical point of view can be modelled as a thin layer, changes its mechanical properties

from those of a solid to those of a viscous liquid. Let us therefore study the reflection

coefficient from the solid/thin liquid layer/solid system in more detail.

In our investigations we would like to answer two important questions. The first one is the

problem of the detectability of a very thin layer between two solids. Here we will be concerned

with the possibility of mere detection of a layer with given mechanical properties. The second

question is the problem of the evaluation of a thin layer. Once the layer can be detected it is

sometimes important to find its material properties and thickness.

4.3.1 Liquid layer between two glass half-spaces

As a first example let us consider a thin silicone fluid layer between two glass half-spaces (see

fig. 4.5). Experimental investigations of the ultrasonic reflectivity from such a system is

presented in chapter 5 of this thesis. Material properties of the glass and the silicone fluid are

given in table 4.4.

density	 longitudinal	 longitudinal	 shear velocity	 shear
(kglm3)	 velocity	 attenuation	 (m/s)	 attenuation

________ _______	 (mis)	 (nepers) ________ (nepers)

epoxy resin	 1170	 2610	 0.0	 1100	 0.0

glass	 2490	 5808	 0.0	 3466	 0.0

silicone fluid	 985	 1050	 0.0	 80.0	 6.28

wat	 1000	 1490	 0.0	 10.0	 6.28

Table 4.4 Assumed properties of materials used in calculations.

Values of density and velocities shown in the table are typical for these two different materials.
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Attenuation in glass and epoxy has been assumed to be negligible and the shear velocity and

attenuation in the silicone fluid were calculated from the Navier-Stokes equation for a fluid of

viscosity of 50 centistokes as shown in Appendix B It can be shown that in a liquid satisfying
the Navier-Stokes equation, the shear waves attenuation is 2it nepers per wavelength for any

frequency.

Figure 4.6 shows a parametric study of the longitudinal-longitudinal reflection coefficient

(RLL) from a thin silicone layer separating two semi-infinite glass half-spaces. The thickness of

the silicone layer varies from 1.0 pm to 0.0 pm in 0.2 pm steps. As can be seen from the plot,

the sensitivity of the RLL reflection coefficient to the layer thickness is very good. For null

thickness of the layer, the silicone interface ceases to exist. In such a case waves in the system

propagate without any obstacles and the reflection coefficient is zero regardless of the frequency

of the incident wave. When the layer is of a finite thickness then the amplitude of the RLL

reflection coefficient starts from a null value at zero frequency and monotonically increases with

frequency up to 50 MHz. The thicker the layer the bigger the amplitude of the reflection

coefficient. It is easy to resolve between thicknesses 0.1 pm apart.

As in all the piots presented in this chapter, the frequency-thickness scaling theorem can be

applied here (see Appendix C). Using this theorem it is possible to generate all the curves for

thicknesses of 0.8 pm and below from the curve for 1.0 pm by 'stretching' the frequency axis

so that th frequency - layer thickness product remains the same. For example (see fig. 4.6) the

reflection coefficient curve for the thickness of 0.6 pm can be generated from 1.0 Jim curve by

expanding the 0-30 MHz interval 10/6 times to obtain a 0-50 MHz range so that the point A will

be mapped onto the point B.

Table 4.5 shows the sensitivity of the reflection coefficient to the silicone layer thickness. All

the values in the table were obtained from the corresponding curves of fig. 4.6. As can be seen

from the table, the sensitivity is excellent. In practice, it means that it is possible to detect the

presence of extremely thin liquid layers and in many cases it is even possible to determine their

thickness (if the material properties of the liquid are known).

	

thickness	 1.0 urn	 0.8 im	 0.6 urn	 0.4 urn	 0.2 jLm	 0.0 tm

Rjj	
0.720	 0.639	 0.529	 0.384	 0.204	 0.0at 25 MHz

change

	

wrtl.0um	 0%	 11%	 27%	 47%	 72%	 100%

Table 4.5 RLL reflection coefficient sensitivity to the silicone layer thickness between two glass half-spaces at
the frequency of 25 MHz.
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Figures 4.7(a) and 4.7(b) show the theoretically predicted pulse response from a system

comprising two 3.0 mm thick glass plates separated by silicone fluid layer of 0.5 p.m thickness

(fig. 4.7(a)) and zero thickness (fig. 4.7(b)). The pulse shape used as an input for the

predictions is the same one we used for the time domain predictions of chapter 3 (see for

example figures 3.6, 3.9 and 3.17), and corresponds to the pulse generated by a typical 10

MHz wideband transducer. In fig. 4.7(a) the reflection from the front face of the glass plate is

marked as FF, while the reflection coming from the 0.5 p.m thick silicone layer is marked as

LL. The third pulse coming after FF and LL is the superposition of the pulse coming from the

back face of the back glass sheet and reverberation within the front glass plate. Despite a very

large wavelength-to-layer thickness ratio (more than 1000 here), the reflection from the silicone

can be easily detected and analysed. The pulse shape of the reflection from the silicone layer

(LL) is different from the front face reflection (FF). This is because the reflection coefficient

from the layer is heavily frequency dependent (see fig. 4.6). When the thickness of the silicone

layer is zero (see fig. 4.7(b)) then there is no LL reflection at all.

If a shear wave is used instead of the longitudinal wave then it is theoretically possible to detect

presence of extremely thin layers (far too thin to exist in reality because of irregularities of the

mating surfaces). Figure 4.8 shows the shear-shear reflection coefficient (RSS) from a thin

silicone layer separating two semi-infinite glass half-spaces. The thickness of the silicone layer

varies from 1.0 pm to 5.0 nm. From the plot it can be seen that even a 5 nm thick silicone layer

strongly reflects ultrasound for frequencies as low as 5 MHz. This extraordinary behaviour can

be explained by looking at table 4.4. The shear velocity of the silicone is very low which means

that the tangential stiffness of the liquid is also very low. Therefore, even for extremely thin

layers the shear stiffness is too low to support any significant tangential stress at the

glass/silicone boundary. In such circumstances, the interfacial conditions are close to the free

boundary conditions for which the reflection coefficient is unity. The layer stiffness has to be

dependent on the thickness of the layer; the thicker the layer the lower the tangential stiffness of

the layer. From fig. 4.8 it can be seen that for larger values of the layer thickness (see for

example the curve for 1.0 pm) the reflection coefficient is close to unity.

4.3.2 Liquid layer between glass and epoxy half-spaces

So far we have analysed the reflectivity from a thin liquid layer separating two half-spaces of

the same material and we found that the detectability of such a layer is very good. Using a

longitudinal wave at normal incidence it was possible to resolve layer thicknesses to within 0.1

jim. However, this is not the case when the thin layer separates two dissimilar materials. Even

when there is no thin layer at all in such a system, the reflection coefficient can be still of
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significant amplitude. The presence of the thin layer in such cases will modify the reflectivity at

the interface only slightly. Let us use a simple example to illustrate the problem.

Normal incidence reflection coefficients

Figure 4.9 shows the normal incidence longitudinal-longitudinal (RLL) reflection coefficient

from a 1.0 p.m thick silicone layer between two glass half-spaces and from a 1.0 p.m thick

silicone layer separating glass and epoxy half-spaces. The RLL reflection coefficient was

computed in the frequency range between 0 and 1.75 GHz, which is an order of magnitude

higher than the practical testing range. The glass/silicone/glass RLL curve for the practical

testing frequency range was shown in fig. 4.6. Curve A of fig. 4.9 is actually a zoomed-out

version of the 1.0 p.m curve of fig. 4.6. As can be seen from fig. 4.9, the curve A starts from

null at zero frequency and rapidly increases over the first 100 MHz to attain values close to

unity at around 250 MHz. Then above 250 MHz the curve rapidly dives down to reach zero at

around 500 MHz which is the first resonant frequency of the silicone layer. The curve then

repeats itself over the next 500 MHz to reach the second resonance of the layer at around 1

GHz, and so on. Curve A is a typical reflection coefficient curve from a layer separating two

identical materials. Indeed, exactly the same features can be seen looking at the RLL curve of

fig. 3.4, computed for an aluminium layer separating water half-spaces, or fig. 4.2 (curve 1),

calculated for the water/aluminium oxide/water system.

However, if there are dissimilar materials on the opposite faces of the thin layer then, by eqn

(4.31), the reflection coefficient curves no longer start sharply from zero at low frequencies.

Curve B of fig. 4.9 shows the RLL reflection coefficient for exactly the same layer as of the

curve A but between glass and epoxy resin. Because the materials are dissimilar, the RLL

amplitude at zero frequency is 0.651, which is the reflection coefficient between glass and

epoxy without any layer in-between. At low frequencies the B curve is still an increasing

function of frequency but the increase is much slower that that of curve A. The resonant

frequency minima are also much shallower than those of curve A. This results in a significant

decrease in the sensitivity of the RLL coefficient to the presence of thin layers. Figure 4.10 and

table 4.6 show a parametric study of the RLL reflectivity from thin silicone fluid layers of

different thicknesses. As can be seen from the graph, the sensitivity of RLL reflection

coefficient to the layer thickness is rather low. Without the presence of the thin layer the RLL

coefficient is frequency independent and equal 0.65 1. When the silicone layer is present, then

the longitudinal-longitudinal reflectivity across the glass/epoxy interface increases slightly, but

only by a few percent.
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thickness	 1.0 Lm	 0.8 m	 0.6 m	 0.4 Lm	 0.2 ILm	 0.0 un

RLL	 0.696	 0.681	 .669	 0.659	 0.653	 0.651at 25 MHz

cbange

	

wrti.0m	 0%	 2%	 4%	 5%	 6%	 6%

Table 4.6 R1j normal incidence reflection coefficient from silicone layers of different thicknesses between
glass and epoxy resin. Frequency 25 MHz.

The curves of fig. 4.10 can be directly compared to the curves of fig. 4.6, and table 4.6 to table

4.5.

Using the theory developed in chapter 2 it is possible to generate the time domain pulse

response of the glass plate/silicone layer/epoxy resin plate system in water. Figure 4.11(a)

shows the theoretically predicted time domain response of a 3.0 mm thick glass plate/3.0 mm

thick epoxy resin system in water being excited by a pulse from a typical 10 MHz transducer.

FF is the front face reflection from the glass plate and LL1 is the reflection coming from the

glass/epoxy interface. The third pulse, LL2, seen in the figure is the second reverberation of the

longitudinal wave within the glass plate. It is the LL1 reflection which will have to be

monitored in order to detect presence of thin layers between glass and epoxy. Figure 4.11(b)

shows what happens when a 0.5 p.m thick silicone layer is present at the interface. The

amplitude and shape of the LL1 reflection of fig. 4.11(b) are practically the same as those of

fig. 4.11(a). It is therefore practically impossible to detect the presence of the 0.5 p.m thick

liquid layer between the glass and epoxy resin using a 10 MHz transducer at normal incidence.

Some noticeable change can be seen when the thickness of the silicone layer is increased.

Figure 4.11(c) shows the time domain response of the system with a 5.0 p.m thick layer, that is

10 times thicker than that of fig. 4.11(b). Here it can be seen that LL1 reflection is 20 % bigger

than those of fig. 4.11(a) and 4.11(b).

The frequency domain and the time domain study presented here show clearly that if thin liquid

layers are entrapped between two different materials then it is not always possible to detect their

presence using the normal incidence longitudinal-longitudinal reflection coefficient method.

This was not the case when analysing normal incidence RLL reflectivity from a thin layer

having the same material on both sides (glass/silicone/glass system).

Let us now investigate the use of the shear-shear (Rss) normal incidence reflection coefficient

for the case of dissimilar materials across the interface. Figure 4.12 shows a parametric study

of the glass/silicone layer/epoxy resin system with silicone layers of different thickness. When

there is no silicone layer present then the RSS reflection coefficient is frequency independent
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and assumes a constant value of 0.740. When the silicone layer is present then at zero

frequency the layer is not 'visible' to the shear wave, and RSS is 0.740. This can be shown in

a more rigourous manner as follows. When the frequency is zero then the frequency - layer

thickness product is zero. Exactly the same value of frequency - layer thickness product can be

obtained when the layer thickness is zero, that is, when there is no layer present. Because the

frequency - thickness is invariant in the wave equation (see Appendix C), then at zero

frequency, the reflection coefficient has to be the same as for the layer of zero thickness.

Frequency - thickness invariance also means that for a layer of zero thickness, RSS has to be

constant with frequency.

At zero frequency (see fig. 4.12) the Rss coefficient is 0.740 for all layer thicknesses and is

equal to the glass/epoxy resin RSS reflection coefficient. Then, for higher frequencies, the

presence of the fluid layer becomes visible. Because of the very heavy damping of shear waves

in the fluid, the thin layer effectively decouples the glass from the epoxy at higher frequencies.

In such cases, the RSS coefficient is solely a function of the interfacial conditions on the

incident side of the fluid layer, that is, RSS increases monotonically to reach the value of the

glass/silicone fluid reflection coefficient, which is close to unity.

It can be seen from fig. 4.12 that the normal incidence RSS coefficient is much more sensitive

than the normal incidence RLL coefficient (see fig. 4.10), and can therefore be used to detect

the presence of thin fluid layers. The higher the frequency use'l, the better the sensitivity of the

method. However, because of inconsistent coupling between shear wave probes and plates,

quantiative measurements of the normal incidence RSS reflection coefficients are very

cumbersome in practice. Therefore, the normal incidence RSS method for determination of the

fluid thickness can only be used in a very carefully conducted experiment, provided that the

shear wave velocity and damping in the fluid is known.

Oblique incidence reflection coefficients

From the investigations conducted so far it clearly appears that there is no straightforward

means of detection and quantitative measurement of the properties of thin liquid layers between

two dissimilar materials. It is therefore necessary to investigate the sensitivity of the reflection

coefficient techniques at different angles of incidence.

Since there are two different types of bulk waves in solids then, in general, there are four

different types of reflection coefficients to compute:

RLL - longitudinal wave incident and longitudinal wave reflected,

R1 - longitudinal wave incident and shear wave reflected,
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RSL - shear wave incident and longitudinal wave reflected,

RSS - shear wave incident and shear wave reflected.

These four reflection coefficients are functions of frequency and angle of incidence of the

incident wave (longitudinal for R11 and R, and shear for RSL and RSS).

Figures 4.13 - 4.16 show a parametric study of the set of all four reflection coefficients at a

glass/epoxy resin interface with silicone fluid of different thicknesses present. In fig. 4.13 the

amplitude of the RLL coefficient is shown. The frequency of the incident longitudinal wave is

kept constant here at 10 MHz, and the angle of incidence varies from 0 to 90 degrees. At

normal incidence (0 degrees) there is virtually no difference between all five cases computed.

This is in agreement with the previous findings presented in fig. 4.10. However, fig. 4.13

shows that the sensitivity of the RLL coefficient increases significantly with the angle of

incidence, and at the angle of 52.0 degrees it is rather easy to determine the presence of the

silicone layer, even when it is very thin. Indeed, when the liquid layer is not present at the

interface, the RLL coefficient is zero at around 52 degrees and the presence of even a very thin

layer 'pushes' the amplitude of RLL upwards making it possible to detect. Similar features can

be seen in fig. 4.14, where the parametric study of RSS reflection coefficient was carried out.

Here the best angle of incidence is at around 28.4 degrees. The RS5 coefficient is zero for zero

thickness of the silicone layer, and relatively large even for a thickness of 0.05 ILm. At normal

angle of incidence, the RSS coefficient also shows very good sensitivity to the thickness of the

silicone layer. This is not the case with the longitudinal-longitudinal reflect ion coefficient (see

fig. 4.13).

In fig. 4.15 parametric study of Rj reflectivity is presented. The most sensitive angular region

is between 40 and 60 degrees. The difference between RLS reflectivity with and without the

silicone layer is of the order of 10 percent.

Figure 4.16 shows the shear-longitudinal (R5!) reflection coefficients for the same silicone

layer thicknesses as in figures 4.13 - 4.15. Here, all the curves are close to each other

everywhere in the angular domain which means that the RSL sensitivity to the presence of the

liquid layer is very small.

Figures 4.13 - 4.16 show clearly that for certain angles and certain types of reflection

coefficient we may expect a significant improvement in sensitivity over the normal incidence

technique. It is therefore of practical interest to be able to generate oblique incidence waves at

particular angles within a specimen and to be able to receive them for further signal processing.

Figure 4.17 shows schematically how oblique incidence longitudinal waves can be generated
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within a glass/silicone layer/epoxy plate in water. The angle of incidence of the longitudinal

wave in water is adjusted to be 11.7 degrees, so that the transmitted longitudinal wave in glass

hits the silicone layer at 52.0 degrees. This is the angle of incidence where the biggest

sensitivity of RLL reflection coefficient is expected. (see fig. 4.13). In fig. 4.17, FF is the

reflection from the front face of the glass plate. The amplitude of this reflection is a function of

the material properties of glass and water and does not tell us anything about the glass/epoxy

interface. The further three reflections: SS, LS+SL, and LL, come from the glass/epoxy

interface and are influenced by the presence of the silicone layer. If the thickness of the glass

plate is known then it is possible to calculate times of arrival of these reflections, since the

angles of refraction in glass can be obtained from Snell's law. Let us assume that the thickness

of the glass plate is 3.0 mm. Table 4.7 shows angles of refraction and times of arrivals of the

SS, LS+SL, and LL reflections for the case when the longitudinal wave is incident from water

at 11.7 degrees. Despite the longer distance travelled within the plate, the LL reflection arrives

first, because the longitudinal wave velocity is much greater than that of the shear wave. The

LS and SL reflections arrive exactly at the same time because each of them travel one half of the

way as the longitudinal wave and the other half as the shear wave. The SS reflection comes last

because the shear wave is considerably slower than the longitudinal wave.

Type of reflection	 Angle of incidence at	 Time of arrival wrt FF
glass/epoxy (degrees)	 (jis)

LL	 longitudinal: 52.0	 0.64

longitudinal: 52.0
1.08LS+SL	 shear: 28.0

SS	 shear. 28.0	 1.53

Table 4.7 Angles of refraction in glass and times of arrival for different reflections coming from glass/epoxy
interface for the longitudinal wave incident at 11.7 degrees in water. Thickness of glass plate is
3.0 mm. See also fig. 4.17.

Figure 4.18(a) shows the time domain response of a 3.0 mm thick glass plate/3.0 mm thick

epoxy resin system in water to an infinite plane wave pulse excitation. The shape and duration

of the pulse is typical for a wideband 10 MHz transducer. The angle of incidence from water is

11.7 degrees. FF is the front face reflection from the glass plate, and (LS+SL)1 is the first

combined longitudinal-shear and shear-longitudinal reflection from the glass/epoxy interface,

and arrives 1.08 is after the FF reflection. The subscript here denotes the reflection number of

a given wave type in the plate. The second reverberation of the LS+SL type arrives 2.16 p.s

after FF and is denoted as (LS+SL)2. The first reflection of the SS type arrives 1.53 p.s after

FF, and therefore appears between (LS+SL)1 and (LS+SL)2. The LL1 reflection, with delay
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time of 0.64 J.Ls, should be found between FF and (LS+SL)1. However, LL1 is not present in

fig. 4.18(a) because the R11 , reflection coefficient is zero in this case.

When a 0.5 pm thick silicone layer is present then, according to the Rjj , reflection coefficient

predictions of fig. 4.13, we should expect an LL1 reflection to be present. This is indeed the

case. Figure 4.18(b) shows the time domain pulse response of the 3.0 mm thick glass/0.5 j.im

thick silicone layer/3.0 mm thick epoxy resin system in water. The LL1 reflection is clearly

visible here, and its time of arrival is in agreement with the calculations shown in table 4.7.

Figures 4.18(a) and 4.18(b) have been calculated for exactly the same system as those of

figures 4.11(a) and 4.11(b). Comparison of the plots clearly shows that oblique incidence can

significantly improve the sensitivity of the reflection coefficient method for detection of thin

liquid layers.

4.4 The reflection coefficient from thin solid layers

One of the most significant differences between solids and liquids is that solids can sustain

large shear stresses while liquids cannot. The only mechanism through which liquids can

support shear stresses is viscosity. The higher the viscosity of the liquid, the larger the shear

stresses which can be produced for the same displacements and frequency. In ideal liquids,

therefore, shear stresses cannot exist. Another important feature of real (viscous) fluids is that

the same mechanism which supports the shear wave propagation is also responsible for the

attenuation of the shear waves. It is easy to show that in a liquid satisfying the Navier-Stokes

equation, the shear wave attenuation is 2ir nepers per wavelength, and is frequency independent

and the same for all liquids. Therefore, even thin layers of liquids have very low shear stiffness

and heavy attenuation of shear stresses.

Solid materials, however, can support shear stresses in a similar manner as they support

longitudinal stresses, that is, by reacting elastically to deformations imposed on them.

Therefore, viscosity is not the main mechanism for supporting shear wave propagation here.

The Poisson's ratio determines the shear stiffness of materials. Viscosity is responsible for

attenuation of shear waves and affects their velocity only by a small amount.

Let us calculate reflection coefficients at an aluminium/epoxy interface in an adhesive joint. At

first sight, such a case should not pose any theoretical complications as it involves only two

semi-infinite half-spaces. In real adhesive joints, however, aluminium surfaces are electro-

chemically treated prior to bonding in order to form thin oxide layers. The epoxy resin is
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therefore in contact with an oxide layer rather than aluminiunt Therefore, in order to model the

aluminium/epoxy interface, a thin oxide layer has to be introduced between relatively thick

aluminium and epoxy layers. These can be considered in our model as semi-infinite half-

spaces.

Normal incidence reflection coefficients

Let us first calculate the normal incidence longitudinal reflection coefficient from a thin oxide

layer between aluminium and epoxy. In table 4.8 the acoustic properties of the different

materials used for calculations are shown.

material	 density (kg/rn3) longitudinal shear velocity
velocity (m/s) attenuation	 (m/s)	 attenuation

_________ _________ _________ (nepers) _________ (nepezs)

aluminium	 2820	 6330	 0.0	 3120	 0.0

aluminium	 3896	 10400	 0.0	 6490	 0.0
oxide

epoxy resin	 1170	 2610	 0.0	 1100	 0.0

Table 4.8 Acoustic properties of materials used in reflection coefficients calculations.

Taking the values of velocities and densities from table 4.8, we obtain the longitudinal
impedances of aluminium and epoxy, zAj = 17.85 E6 kg/m2s, and z,x}r = 3.05 E6 kg/m2s.

Properties of the aluminium oxide layer, listed in table 4.8, are correct for the material without

any porosity (Wang and Rokhlin 1990). In reality, however, oxide has a porous structure and

therefore its mass will drop accordingly. Let us assume that the longitudinal velocities in oxides

are independent of porosity. Some justification of this is given in section 7.2.2 of this thesis,

where the problem of the theoretical modelling of oxides layers is discussed in more detail.

Table 4.9 shows how the density and longitudinal impedance of the oxide layer changes with

porosity, and fig. 4.19 shows the normal incidence longitudinal reflection coefficients for 50
pm thick oxide layers with different percentages of porosity.

As can be seen from fig. 4.19, there is a significant variation of R11 reflectivity due to different

densities of the oxide. According to eqn (4.31), all the curves, however, have the same value of

0.708 at frequencies of 0.0 MHz, and at 104.0 MHz, which is the first resonant frequency of

the layer.
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porosity of	 .	 kngiwdinal	 krngitudinal	 resonant
aluminium	 velocity	 impe&ice	 fiequency re	 amplitude atp (kg/rn3)	 (m/s)	 z(kgfm2s)	 (MHz)	 ha1f

30	 2730	 10400	 28.39 E6	 104.0	 0.873

40	 2340	 10400	 24.34 E6	 104.0	 0.83 1

50	 1950	 10400	 20.28 E6	 104.0	 0.766

56	 1716	 10400	 17.85 E6	 104.0	 0.708

60	 1560	 10400	 16.22 E6	 104.0	 0.657

70	 1170	 10400	 12.17 E6	 104.0	 0.462

Table 4.9 Change in reflection coefficient for the alurninium/50 p.m thick oxide/epoxy system for different
porosity of the oxide. RLL curves shown in fig. 4.19.

At a frequency of 52.0 MHz the difference in the reflectivity is the biggest, and eqn (4.45) can

be used to calculate the RLL coefficient here. When the oxide porosity is between 30 % and 50

% then the impedance of the oxide is bigger than those of the aluminium and epoxy half-spaces,

that is, z p < Z&j < Zide. From eqn (4.45) it can be seen that the larger the oxide impedance

here, the more pronounced is the maximum at the frequency of 52.0 MHz. When the porosity
of the oxide is 56 %, then Zepoxy <A1 = Z.oxide, and the reflection coefficient becomes a straight

horizontal line. For porosities of the oxide of 60 % and 70 %, the oxide impedance decreases

further and satisfies the conditions < < Z&j, and Zepoxy zM < Zxide• In such a case

the amplitude at 52.0 MHz becomes a minimum, and the smaller the value of the oxide

impedance, the deeper the minimum.

Figure 4.20 shows the normal incidence RLL coefficients for different oxide layer thicknesses.

Here, the frequency - thickness scaling theorem is demonstrated again (see Appendix C). The

first resonance frequency of the 50 j.tm thick layer is at 104.0 MHz, while for the 100 Lm thick

oxide the first natural frequency is 52.0 MHz. For the 75 p.m thick layer the frequency of the

first resonance is 69.3 MHz which lies between the two previous cases. The porosity of the

oxide was chosen to be 70 %, which places the impedance of the layer between those of epoxy

and aluminium. Therefore the curves bend downwards for low frequencies. As the impedance

of the oxide was kept the same for all three curves, then, according to eqn (4.45), all of them

reach the same minimum amplitude at the half the first resonant frequency.
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Figure 4.21 shows the third parametric study of the aluminium/oxide/epoxy system. This time

we have chosen to vary the longitudinal velocities of the oxide layers, keeping their density and

thickness constant, so that the impedance of the layer is between those of epoxy resin and

aluminium. In accordance with the findings discussed previously and shown in figures 4.19

and 4.20, we should expect two major effects. Firstly for the higher velocities the resonances

move towards higher frequencies to satisfy eqn (4.22), and secondly for higher velocities the

impedance of the oxide layer increases and approaches that of the aluminium. Therefore, by eqn

(4.45), the minima of the RLL curves should become shallower when velocity is increased.

Table 4.10 shows the variation of the longitudinal impedance, the first resonant frequency of

the layer, and the minimum value of the RLL coefficient at half the resonant frequency of the

oxide.

longitudinal	 .	 first resonant	 longitudinal R11, amplitude

	

velocity	
(Jg/3)	

frequency	 impedance

	

ci. (m/s)	 _________ fres(MHz)	 z(kgm3s)	 at tiai

8000	 1170	 80.0	 6.84 E6	 0.233

	

10400	 1170	 104.0	 12.17 E6	 0.462

	

12000	 1170	 120.0	 14.04 E6	 0.567

	

13863	 1170	 138.6	 16.22E6	 0.657

Table 4.10 Change in reflection coefficient from the alwninium/50 tm thick oxide/epoxy system for different
longitudinal velocities of the oxide. RLL curves shown in fig. 4.21.

With the porosity of the aluminium oxide between 60 % and 70 %, the typical

aluminium/oxide/epoxy system satisfies conditions <zj < z < ZxidP.

Using equations (4.22), (4.31) and (4.54), we can state that

- when the density of the oxide increases then the amplitude of the minimum increases (see

fig. 4.19);

- when the thickness of the oxide increases then the frequency of the minimum decreases (see

fig. 4.20);

- when the velocity of the oxide increases then the frequency of the minimum increases, and

the amplitude of the minimum increases (see fig. 4.21).

Figure 4.22 shows schematically possible movement of the minimum point due to changes in

the oxide properties. From fig. 4.22 it can be seen that if the thickness, density or longitudinal
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velocity of the oxide layer changes, then it is possible to use the normal incidence RLL

coefficient to monitor the changes.

At this stage, it is important to fmd out how many independent properties of the layer can be

measured using normal incidence longitudinal reflection coefficient. In general there are four

independent mechanical properties of the layer to be measured: thickness, density, longitudinal

velocity and shear velocity. Examining fig. 4.22 we can see that there are two independent

features the normal incidence curves possess, namely the frequency and the amplitude of the

reflection coefficient at half of the resonant frequency of the layer (see equations (4.36) and

(4.45)). (The RLL amplitude at zero frequency is solely governed by the properties of the half-

spaces and is independent of the layer properties (see eqn 4.31)). These two features are

dependent on three layer properties: density, thickness, and longitudinal velocity. This means

that if the thickness of the layer is known then it is possible to extract the density and

longitudinal velocity of the layer from one normal incidence longitudinal reflection coefficient

measurement. However, if the shear velocity of the layer is to be monitored, then the normal

incidence Rjj coefficient is not capable of providing any information about it.

Note that the curve shown in fig. 4.22 was generated for a 50 .tm thick oxide layer. A typical

thickness of the oxide in aluminium/epoxy joints is about 3.5 J.Lm, that is fifteen times thinner.

In such circumstances we can expect a significant deterioration in the sensitivity of the reflection

coefficient method to changes in the properties of the layer. To illustrate this point, fig. 4.23

shows the normal incidence longitudinal reflection coefficient from a 5.0 l.Lm thick oxide layer

in between the aluminium and epoxy resin half-spaces. The properties of the aluminium, the

epoxy and of the oxide are given in table 4.11 and are very similar to those shown in table 4.9

which were used to compute the curves of fig. 4.21. Because in fig. 4.23 the layer is 10 times

thinner than that of fig. 4.21, the RLL reflection coefficient shows very little sensitivity to a

large variation in the longitudinal velocity of the oxide. Indeed, comparing the curves

corresponding to the oxide 1 and the oxide 4 in fig. 4.23 it can be seen that at a frequency of

100 MHz, a 30 % change in velocity (from 10400 m/s to 7280 mIs) results in only a 3 %

change in RLL coefficient (from 0.696 to 0.674).

If, for some reason, the shear velocity of the layer is to be monitored then the normal incidence

RLL coefficient cannot be used for such a purpose. It is useful, therefore to investigate the

normal incidence shear wave reflectivity (RSS). Figure 4.24 shows the amplitude of the RSS

coefficient from the 5.0 tm thick oxide layer with different shear velocities. For comparison

with the longitudinal reflection coefficient, the mechanical properties of the aluminium and the

epoxy are the same as those of fig. 4.23, and the oxide shear velocity is altered in the same

proportions as the longitudinal velocities in fig. 4.23, as shown in table 4.11.
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reduction in
material	 density (kg3)	 fl8 tUdi11	 She& velocity	

velocitiesvelocity (mis)	 (mis)

aluminium	 2820	 6330	 3120	 N/A

epoxyresin	 1170	 2610	 1100	 N/A

oxide!	 nio	 10400	 6500	 0%
(70 % porosity)

oxide2	 1170	 9360	 5850	 10%

oxide3	 1170	 8320	 5200	 20%

oxide4	 1170	 7280	 4550	 30%

oxide 5	 1170	 5200	 3250	 50 %

Table 4.11 Mechanical properties of the aluminium/5.0 un thick oxide/epoxy system used for valuation of the
sensitivity of the normal and oblique incidence reflection coefficients.

The RSS curves of fig. 4.24 show some improvement of sensitivity over the corresponding

curves of fig. 4.23. For example, comparing curves corresponding to the oxide 1 and the oxide

4, it can be seen that at a frequency of 100 MHz, a 30 % reduction in the shear velocity (from

6500 rn/s to 4550 mIs) results in an 8 % change in RSS coefficient (from 0.732 to 0.674). The

RSS coefficient therefore shows twice the sensitivity of the RLL coefficient.

Oblique incidence reflection coefficients

Figures 4.23 and 4.24 show clearly that the normal incidence RSS and RLL coefficients are not

sensitive enough even to large variations in the material properties of a 5 .Lm thick oxide in

adhesive joints over the range of frequencies up to 100 MHz. It is therefore crucial to

investigate whether the oblique incidence reflection coefficients have better sensitivity than the

normal incidence techniques.

The system chosen for the parametric studies is the same as that used to compute the normal

incidence curves of figures 4.23 and 4.24, and comprises a 5.0 pm thick oxide between the

aluminium and epoxy resin half-spaces. The density of the oxide layer is kept constant, but its

velocities vary. The initial values of the longitudinal and shear velocities are those of 70 %
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porous oxide, then the velocities are reduced in the same proportions with respect to their initial

values by 10 %, 20 % and so on. The material properties of the aluminium, epoxy, the 70 %

porous oxide, and the modified oxides are given in table 4.11. Figure 4.25 shows variations of

the four reflection coefficients, RLL, RSS , RLS, and RSL, to the changes in the oxide layer

velocities at a frequency of 50 MHz.

Figure 4.25(a) shows the longitudinal-longitudinal (RLL) reflection coefficient from the oxide

layers at a frequency of 50 MHz. It can be seen here that at the normal incidence (0 degrees),

the curves corresponding to oxides 1-4 cannot be separated. However, at angles of incidence in

the range between 55.0 and 85.0 degrees, the sensitivity increases substantially, and good

separation of all the four curves can be seen. Table 4.12 compares the sensitivity of the RLL

coefficient at normal incidence (0.0 degrees) and at 65.0 degrees.

angle of	 IRLL) of curve 1	 IRLLI of oxide 2	 IRU) of oxide 3	 '1kL1 of oxide 4

llideir.e	 (% change	 (% change	 (% change	 (% change

_____________	 wrt oxide 1)	 wit oxide 1)	 wit oxide 1)	 wit oxide 1)

0.0 deg	 0.705	 0.704	 0.702	 0.700

_____________	 (0.0 %)	 (- 0.1 %)	 (- 0.4 %)	 (- 0.7 %)

65.0 deg	 0.473	 0.422	 0.38 1	 0.356

_____________	 (0.0 %)	 (- 10.8 %)	 (- 19.5 %)	 (- 24.7 %)

Table 4.12 Sensitivity of RLL coefficient to the change in the oxide velocities. Frequency 50 MHz.

From table 4.12 it can be seen that a 30 % decrease in velocities (IRLLI curve of oxide 4)

reduces the amplitude of RLL by as much as 24.7 % at an angle of 65.0 degrees, and by as

little as 0.7 % at normal incidence (0.0 degrees) with respect to the RLL reflection coefficient

from oxide 1.

Figure 4.25(b) shows the shear-shear (Rss) reflection coefficient from the oxide layers at the

frequency of 50 MHz. As with the RLL coefficient, using oblique incidence can increase the

sensitivity of the measurements quite substantially. At normal incidence (0.0 degrees) all four

curves are very close to each other while, for example, at 32.4 degrees, good separation

between the curves can be seen. Table 4.13 compares the sensitivity of RSS coefficient at

normal incidence (0.0 degrees) and at 32.4 degrees. For example, a 30 % decrease in velocities

(IRSSI curve of oxide 4) reduces the amplitude of RSS by 19.5 % at an angle of 32.4 degrees,

and by 0.7 % at normal incidence (0.0 degrees) with respect to the RSS reflection coefficient

from oxide 1.
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angle of	 IRssI of oxide I	 1R55I of oxide 2	 IRssI of oxide 3	 IRSSI of oxide 4
jj	 (% change	 (% change	 (% change	 (% change

_____________	 wrt oxide 1)	 wri oxide 1)	 wrt oxide 1)	 wrt oxide 1)

0.0 deg	 0.74 1	 0.739	 0.734	 0.728

____________	 (0.0 %)	 (-0.3 %)	 (- 0.9 %)	 (- 1.8 %)

32.4 deg	 0.657	 0.623	 0.58 1	 0.529

_____________	 (0.0%)	 (-5.2%)	 (- 11.6%)	 (- 19.5%)

Table 4.13 Sensitivity of RSS coefficient to the change in the oxide velocities. Frequency 50MHz.

Figure 4.25(c) shows the longitudinal-shear (Rsi) reflection coefficient from the oxide layers

at a frequency of 50 MHz. Here, the best sensitivity can be observed at angles around 65.0

degrees. Table 4.14 shows the sensitivity of the RSL coefficient at an angle of 65.0 degrees.

angle of	 IRS L' of oxide 1	 IRSLI of oxide 2	 SL1 of oxide 3	 IRSLI of oxide 4

incidenCe	 (% change	 (% change	 (% change	 (% change
____________	 wrt oxide 1)	 wrt oxide 1)	 wrt oxide 1)	 wrt oxide 1)

65.0 deg	 0.544	 0.569	 0.586	 0.594

_____________	 (0.0 %)	 (4.6 %)	 (7.7 %)	 (9.2 %)

Table 4.14 Sensitivity of RSL coefficient to the change in the oxide velocities.Frequency 50 MHz.

Figure 4.25(d) shows the shear-longitudinal (R) reflection coefficient from the oxide layers

at a frequency of 50 MHz. Thr practically usable range is between 0.0 degrees and the

longitudinal critical angle, which is 29.5 degrees here. Above the longitudinal critical angle, the

reflected longitudinal wave is inhomogeneous and cannot propagate away from the oxide

interface. Some sensitivity can be found at angles just a few degrees below the longitudinal

critical angle (see fig. 4.25(d)). Table 4.15 shows the sensitivity of the RSL coefficient at an

angle of 28.0 degrees.

angle of	 SL' of oxide 1	 IRSLI of oxide 2	 SL1 of oxide 3	 '1SL1 of oxide 4

incdence	 (% change	 (% change	 (% change	 (% change
____________	 wrt oxide 1)	 wrt oxide 1)	 wrt oxide 1)	 wrt oxide 1)

28.0 deg	 0.610	 0.653	 0.683	 0.700

_____________	 (0.0 %)	 (7.0 %)	 (12.0 %)	 (14.8 %)

Table 4.15 Sensitivity of RSL coefficient to the change in the oxide velocities.Frequency 50 MHz.

From fig. 4.25 and tables 4.12-4.15 it can clearly be seen that the oblique incidence technique

can substantially increase the sensitivity of the reflection coefficient method to variations in

material properties of thin layers.
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The last example to be given in this section is the frequency domain shear-shear reflection

coefficient at an angle of 32.4 degrees. This angle of incidence was determined from fig.

4.25(b) as the angle increased sensitivity. Figure 4.26 shows the frequency domain RS s

reflectivity at an angle of 32.4 degrees. The sensitivity of the RSS coefficient here is good and

increases with frequency. Figure 4.26 can be directly compared to figures 4.23 and 4.24,

because they were obtained using the same material properties for the aluminium, the epoxy and

the oxide layers, given in table 4.11. The comparison shows that the 32.4 degree RS s

coefficient of fig. 4.26 is much more sensitive to changes in the oxide layer than the normal

incidence RLI. coefficient of fig. 4.23, and the normal incidence	 coefficient of fig. 4.24.

4.5 Thin layer approximation.

Derivation

The theory for calculating the ultrasonic reflectivity from a multilayered viscoelastic plate is

given in chapter 3. This theory is exact and valid for layered systems of any thicknesses. There

are some simple cases, however, where an approximate theory can be obtained as a

simplification of the exact theory. Simplification means that for a specific case, only the most

important parts of a general theory are used. Simplified theory is no longer general, but it can

give us better physical insight into the phenomena. The exact theory can then be used to find the

limits of applicability of the approximation. The derivation of the matrix formulation of the thin

layer approximation has been done together with my co-worker Mike Lowe.

The starting point of our derivations is eqn (3.7) of chapter 3 of this thesis, relating the stress-

displacement vector one side of the layer to the stress-displacement on the other side,

{Vk(dk)) = 2k {Vk(0)}, 	 (4.46)

where the transfer matrix is given by eqn (3.8) as,

=	 LAC1(0)
	

(4.47)

The transfer matrix is expressed here as a product of two 4 x 4 complex matrices given by

eqn. (3.1). Let us assume that the origin of the coordinate system lies on the bottom boundary

of the layer (see fig. 4.27). Therefore, at the bottom of the layer X2 =0, and at the top of the

layer x2 = dk, where dk is the thickness of the layer Equation (4.47) can be re-written as,

9=.,*'(d) A 1 (0),	 (4.48)
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where the subscript, k, was omitted here for clarity. It is possible to calculate the transfer matrix

2 in closed fonTi. Its terms are given below:

L11 =(g+g1)+f32s2(g5+g51),

asC
L12	 (gp - g-') + B 13s (-g s +

L13 = iopC32s (gp + gp 1 - g 5 -

iopC2a
L14 = 2A (gp - g-') + 2io)pB1 3s2 (g 5 - g51),

Ab2s	 C3s
L21= a (gp- gp )+--(-g+g'),

L22 = t32s2 (gp + gp) + (g 5 +

2AkDps24	iwpC23
L23 =	 (gp - go-') + 2B (g 5 - gs4),

a

L24=L13,

L31= S (g+g 1 -
2iwp

as2	 B
L32 = .	 (g, - gp) + .	 -

2Aiop	 2I3iwp

= L22,

L34=L12,

L41 = A (g - gp1) + 2Bkop (g s -
2aiop P

L42=L31,

L43=L21,

L =	 (4.49)
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where the terms A, B, C, g,, and g 5 , are given by eqn (3.2), putting x2 = d,

A = (1a2s2) la,	 B = (1- 2s2) 112, C = 1-232s2,

= ei0 '	 = icoB1d
g,

When thickness of the layer, d, becomes small then,

g	 1 +icoAa1d,

1 +icoBt-1d,

which gives,

g+g2,

g-g2koAa1d,

gs + g5	2,

g 5 - g5 1 2icoBd.

(4.50)

(4.51)

(4.52)

The approximation here takes into account only the constant and linear terms of the Taylor

expansion with respect to d, around d =0. Equations (4.51) states therefore the assumption on

which the whole thin layer approximation will be built. Substituting eqn (4.52) into eqn (4.49)
gives the expression for the transfer matrix .1€ as,

1	 -icosd	 0	 -(02px2

	

iws(2f 2cr2-1)d 1	 -w2p[1-4s2f2(1-2a2)]d
	

0

0	 1	 -iOd
	 (4.53)

d	 0	 iws(22cz2-1)d
	

1

Equation (4.53) is the thin layer approximation of the stress-displacement transfer matrix of

eqn. (4.49) and is dependent on three parameters: the frequency of excitation w, thickness of

the layer d, and a variable s, defmed in eqn (2.60), characterising the angle of incidence of the

exciting wave.

When the incident wave propagates in the direction perpendicular to the layer then the direction

cosine of eqn (2.60) N 1 =0, and therefore s=0. The stress-displacement transfer matrix 2 of
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eqn (4.53) then simplifies to,

1	 0	 0

0	 1

2=	 1
p2

0	 0

-o2pd

0

0
	 (4.54)

1

The form of the matrix 2 in eqn (4.54) is simple and its terms have a straightforward physical

interpretation, as described below. Using eqn (2.17) we have,

pa2 = ?+2p. - i('+2j.t'),	 (4.55)

and therefore,

1	
(4.56)

where kN is the dynamic stiffness per unit area of the layer in the direction perpendicular to the

plane of the layer (normal stiffness). Using eqn (2.18) we have,

=	 (4.57)

1	 1	
(4.58)

where kT is the dynamic stiffness per unit area of the layer in the direction parallel to the plane

of the layer (tangential stiffness). Since p is the density of the layer and x2 is the layer

thickness then,

px 2 = m,	 (4.59)

where m is the mass of the layer per unit area. Combining equations (4.54), (4.56), (4.58), and

(4.59) we have,

r	 0	 0	 m1 a22 22"t

I	 II 0	 1 -w2m	 0 

I 
1211	

= 1	

(4.60)

Li

0

0	 0	 1	 u2ibouom U2 J tOP
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Here we can see that even for a simple normal incidence case the stress components are not

equal on each side of the layer. This is not the case when simple 'spring' boundary conditions,

given by eqn (2.111), are used instead of the thin layer approximation. There we assumed that

stresses are equal on both side of the boundary, ie the layer has a negligible mass.

Comparison of the spring model with the exact theory

There are three different models of the behaviour of thin layers available and discussed in this

thesis. The first one is an exact model, developed in chapters 2 and 3, and used in sections 4.1-

4.4 of this chapter. In the exact model the layer is considered as a volume of continuum material

where the mechanical waves propagate in the same manner as in an infinite medium. The

response of the layer is defined by the boundary conditions at both sides of the layer, and is

obtained in terms of the amplitudes of the bulk waves present in the layer.

The second model presented in this thesis is an 'engineering' discrete model of the layer

behaviour. Here it is assumed that when the frequency of excitation is low, the only important

feature of a thin layer is its stiffness (see section 1.4.1 for more details). Therefore, for low

frequencies, the layer can replaced by a spring. Such a model, if accurate enough, can give us

good insight into the physics of thin layers at low frequencies of excitation. Let us call this

model the spring model.

The third model is the thin layer approximation derived directly from the continuous model. In

such a model, it is firstly assumed that the layer conforms to the equations of continuum

mechanics, and the response of the layer is described in terms of the plane wave amplitudes

propagating in the layer. Then the thickness of the layer is assumed to be small and the limiting

case of the stress-displacement relationship on both sides of the layer is derived. The

derivations show that the general case of the thin layer approximation is far from being simple.

The simplest case is when the incident wave strikes the layer at normal incidence. Here, the thin

layer can be modelled it terms of its stiffness and mass. In other words, the derivations show

that the thin layer responding to normal incidence excitation can be modelled as a discrete mass-

spring system rather than a spring only system.

Let us therefore compare the two approximate models to the exact one. The first example is a

0.1 mm thick epoxy layer between two aluminium half-spaces. Material properties of the

aluminium and the epoxy are given in table 4.1. Figure 4.28 shows the normal incidence

longitudinal reflection coefficient from the layer. The three different curves on the plot show the

predictions of the three different models. As can be seen from the figure, in the low frequency
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range, the spring model and the mass+spring model approximate the exact solution rather well.

The mass+spring model underestimates the exact theory, while the spring model overestimates

it.

In fig. 4.29 the normal incidence longitudinal reflection coefficient from an 0.1 mm thick epoxy

layer in water is calculated (see table 4.1 for the material properties). Here it can be seen that the

mass+spring model approximates the exact theory well, while the spring model is not capable

of providing reasonable results even for very low frequencies.

Figure 4.30 shows the normal incidence longitudinal reflection coefficient from a 50.0 p.m thick

oxide, embedded between aluminium and epoxy half-spaces. Material properties of the

aluminium, the oxide and the epoxy are given in table 4.1. The figure shows that the spring

approximation generates a reflection coefficient which is an increasing function of frequency,

which is the opposite to what the exact theory gives. The mass+spring model, however,

approximates the exact theory in the low frequency region rather well.

Figure 4.31 shows the normal incidence reflection coefficient predictions from an oxide wafer

in water. As before, material properties of the oxide and water are given in table 4.1. It can

clearly be seen from the fig. 4.31 that the spring model fails to model the response of the layer

even approximately, while the mass+spring model can be used to accurately predict the

behaviour of the layer in the low frequency range.

Limits of applicability of the spring model

Looking at figures 4.28 - 4.31, one can see that the mass^spring model can be successfully

used as a low frequency approximation of a thin continuous layer. This is not the case,

however, with the spring model which sometimes fails to work well. Let us therefore determine

the conditions in which the spring model can be used as a thin layer approximation. In order to

do so the normal incidence reflection coefficient using the mass+spring approximation will be

derived and compared with the reflection coefficient using the spring model.

Consider a layer of thickness L in between two half spaces as shown in fig. 4.32. Let us denote

the half-space, extending downwards from the bottom of the layer as medium number 1, the

layer as medium number 2, and the top half-space as medium number 3. Each of the three

media are given their own densities and wave velocities, p 1 and cj, i = 1,2,3. Let us

furthermore assume that the layer (medium 2) has been approximated by a mass+spring

boundary. Using eqn (4.60), which was derived for the mass+spring model, the normal

stresses and displacements at the top of the layer can be described in terms of the stresses and
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displacements at the bottom of the layer as,

a(L)=a(0)-o2m2u(0),

where, by equations (4.56), the stiffness of the layer is given by,

2
P2 C2

k2= L

and, by equations (4.59), the mass of the layer is given by,

= p 2 L.

(4.61)

(4.62)

(4.63)

(4.64)

Setting x =0 in equations (4.8) and (4.9), the displacements and normal stresses at the bottom

of the layer can be expressed as,

u(0) = T1 + R1,	 (4.65)

a(0)= iu)z 1 (T1 -R1),	 (4.66)

where 0 is the frequency of excitation, T 1 and R 1 are the wave amplitudes in the bottom half-

space, and z 1 is the acoustic impedance of medium 1, z 1 = p 1 c 1 . Similarly, using equations

(4.19) and (4.20), the displacements and normal stresses at the top of the layer can be

expressed as,

u(L) = T3,	 (4.67)

cT(L)= icoz3T3,	 (4.68)

where T3 is the amplitude of the transmitted wave in the top half-space, and z 3 is the acoustic

impedance of medium 1, z3 = p 3c 3 . Putting equations (4.65), (4.66), and (4.67) into eqn

(4.61), we have,

T3 =T1 ^R 1 +—icoz 1 (T1 -R1).	 (4.69)

Putting equations (4.66), (4.67), and (4.68) into eqn (4.62), we have,

iz3 T3 =oz1 (T1 -R 1 )-o 2 m2 (T1 +R1).	 (4.70)
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In order to solve the reflection coefficient problem, it is necessary to set the amplitude of the

incident wave, T 1 , to unity and solve for the amplitude of the reflected wave, R 1 . Putting

T1 = 1, and eliminating T3 from equations (4.69) and (4.70) the following expression can be

fmally derived,

2
z 1 -z3- F(z1z3_z2)

R1=
in)	 2

z 1 + z3 - F-(zlz3 +z2)

(4.71)

Equation (4.71) describes the normal incidence reflection coefficient from the mass+spring

boundary in terms of its acoustic impedance and stiffness as well as acoustic impedances of the

neighbouring half-spaces. In order to obtain an expression for the reflection coefficient from the
spring only boundary, it is necessary to set the mass of the layer to zero. Setting, m 2 = 0,

means that the density of the layer, P2=0 by eqn (4.64), and therefore its impedance, z2 =0.

The reflection coefficient from the spring boundary can then be obtained by setting z 2 =0 in

eqn (4.71),

in)
z 1 -z3 - —z1z3

R1=	
10)

	 (4.72)

Z1 + Z3 -

The normal incidence reflection coefficient from a spring boundary was derived by Tattersal

(1973), and shown in eqn (1.3) of this thesis. Equation (1.3) can be obtained from eqn (4.72)
by taking the frequency, ,to be negative, thus conforming to Tattersal's notation convention.

Having derived the expressions for reflection coefficients from mass+spring and spring

boundaries, it is now possible to find the conditions in which the spring model gives poor

approximations. Comparing equations (4.71) and (4.72) it can clearly be seen that the spring

model will be a satisfactory approximation of the mass+spring model only when the square of

the layer's impedance is much smaller then the product of the impedances of the neighbouring

half-spaces, that is,

2 
<< z 1 z3 .	 (4.73)

It has been shown in this chapter (see equations (4.51) - (4.60)) that the mass+spring model

approximates the behaviour of thin layers satisfactorily only at low frequencies, when the

conditions stated in eqn (4.51) are met. Therefore, the spring model can be applied successfully
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only when both requirements, stated in equations (4.51) and (4.73) are concurrently satisfied.

Let us then analyse figures 4.28 - 4.31 again applying the criterion stated in eqn (4.73). Table

4.16 shows the impedances of the materials used in the reflection coefficients calculations of

figures 4.28 - 4.31 as well as the left hand side and the right hand side terms used in criterion

(4.74). The values of impedances were taken from table 4.1.

2
Figure	 system	

'3	 l	 Z1Z3

aluminium/
Fig. 4.28	 17.85 E6	 3.05 E6	 17.85 E6	 9.3 E12 319.0 E12

aluminium
water/

Fig. 4.29	 1.49 E6	 3.05 E6	 1.49 E6	 9.3 E12	 2.2 E12

wa
aluminium/

Fig. 4.30	 iclel	 17.85 E6	 12.17 E6	 3.05 E6	 161.3 E12	 54.4 E12

__________	 epoxy	 __________ ___________ __________ __________ __________

water/
Fig. 4.31	 1.49 E6	 12.17 E6	 1.49 E6	 161.3 E12	 2.2 E12

wa

Table 4.16 Application of criterion given in (4.73) to the results shown in fig. 4.28 - 4.31.

Looking at table 4.16 it can now clearly be seen that the system of fig. 4.28,

aluminium/epoxy/aluminium, is the only one which satisfies criterion (4.73). The other systems

fail to do so to a greater or lesser extend indicating that the application of the spring model

approximation will be erroneous there, even at very low frequencies. This is particularly the

case for the system of fig. 4.31 where z2 is much higher than z 1 z3, which is the opposite to

what criterion (4.73) demands. Inspection of figures 4.28 - 4.31 confirms the above findings.

4.6 Conclusions

It has been shown in this chapter that the reflection coefficient method can be used to detect the

presence of thin liquid and solid layers. The liquid layers are rather easy to detect using normal

incidence techniques with either longitudinal or shear waves. If it is impossible to detect the

presence of the liquid layer using the conventional normal incidence longitudinal technique,

then the shear wave normal incidence method is capable of providing the answer. The shear

stiffness of liquid layers is extremely low, therefore the normal incidence shear wave

reflectivity from these layers is close to unity. However, because the normal incidence shear

wave method suffers from unreliable coupling, it might be desirable to avoid this problem by
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using the oblique incidence technique.

When there are solid layers to be detected, then the reflection coefficient methods may not be

sufficiently sensitive, particularly when the impedance of the solid layer is similar to one of the

neighbouring half-spaces. As the solid layer is stiff in the shear direction, the normal incidence

shear wave reflection coefficient is not as advantageous from the sensitivity point of view as it

was with liquids. However, it has been shown that the oblique incidence method can be much

more sensitive to variations in the properties of solid layers than either the normal incidence

longitudinal or shear wave techniques.

It has been also shown in this chapter that, in general, the 'engineering' spring model

approximation of a thin layer is not accurate enough to be used even at very low frequencies.

The mass plus spring model should be used instead. However, in some circumstances it is

valid to apply the spring model as an approximation of a thin layer.
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y

T1	 • •T2	 T3

R3

medium 1
	

layer (medium 2)
	

medium 3	 x

x=O
	

x=L

Fig 4.1 System used for the calculation of the normal
incidence reflection coefficient from the layer.
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Fig. 4.4 Normal incidence reflection coefficient from the aluminium/ 100 in thick
layer/epoxy system. Properties of aluminium and epoxy are given in table 4.1, and
properties of the layer are given on table 4.3. (a) Curves corresponding to cases 1-3
in table 4.3, (b) Curves corresponding to cases 4-7 in table 4.3.
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	incident	 reflected

	

longitudinal	 longitudinal

	

or shear	 or shear

I,	 1/	 1/ 
\	

1/	 /1 
/ //
	 II	 /1

I,	 ,, \,, I, / // //	 I,

glass ii	 i \ ii ,/,,	 1/	 ii

glass //	 //	 ii	 //	 //
//	 //	 //	 I,	 II	 ,,

II	 /1	 //	 I,	 1/	 /1	 1/

silicone
\ fluid

Fig 4.5 Thin silicone fluid layer separating glass half-spaces.
Material properties used in reflection coefficient
calculations are given in table 4.4.
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1.00

I)

a

-1.00
o.00	 Time (p s)	 3.50

1.00

.

I

-1.00
0.00	 Time (p s)	 3.50

Fig. 4.7 Normal incidence longitudinal excitation response of the system comprising two 3.0
mm thick glass plates with and without 0.5 pm thick silicone fluid in between. FF
is the front face reflection, IL is the longitudinal reflection coming from the silicone
layer, while BF is the reflection coming from the back of the glass/silicone/glass
system. (a) Silicone layer present, (b) No silicone layer present.
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Fig. 4.11 Normal incidence longitudinal excitation response of the system comprising a 3.0
mm thick glass plate and a 3.0 mm thick epoxy resin with and without a silicone
fluid in between. (a) No silicone layer present, (b) 0.5 im thick silicone layer
present, (c) 5.0 urn thick silicone layer present. FF is the front face reflection, LL1
and LL2 are the longitudinal reflections reflected from the silicone layer.
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longitudinal wave
incident

SL
FF
	

as LS LL

11.7 degrees

I,	 //	 //	 I//	 I 3.Onim

:\*

\ silicone
ees	 \ fluid

Fig 4.17 Generation of the oblique incidence longitudinal wave in glass.
Angle of incidence in water is adjusted to 11.7 degrees
in order to generate the longitudinal wave in glass incident
at 52.0 degrees at the glass/silicone interface.

FF is the front face reflection,
SS is the shear-shear reflection from the silicone layer,
LS is the longitudinal-shear reflection from the silicone layer,
SL is the shear-longitudinal reflection from the silicone layer,
LL is the longitudinal-longitudinal reflection from the layer.
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1.00

a

E

-1.00
0.00	 Time (I ts)	 330

1.00

I

-1.00
0.00	 Time (ILl)	 3.50

Fig. 4.18 Oblique incidence response of the system comprising a 3.0 mm thick glass plate and
a 3.0 mm thick epoxy resin with and without a silicone fluid in between.
Longitudinal wave excitation at 11.7 degrees in water. (a) No silicone layer present,
(b) 0.5 p.m thick silicone layer present. FF is the front face reflection, LS+SL is the
combined LS and SL reflection, LL is the longitudinal-longitudinal reflection, and
SS is the shear-shear reflection from the glass/epoxy interface.
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Fig. 4.27 Derivations of thin layer approximation.
Coordinate system position with respect to the layer.
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Fig. 4.32 Mass+spring approximation of a thin layer.
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CHAPTER 5

Validation of the theory.
Accuracy of the reflection coefficient measurements

5.1 Introduction

Chapter 5 is concerned with the practical aspects of ultrasonic reflection coefficient

measurements from multilayered viscoelastic plates at normal and oblique incidence. Here a

detailed description of the measurements is given, the validation of the theory developed so far

is carried out, and an error assessment of the experiments is worked out.

In chapters 2, 3, and 4 various theories were developed in order to model the response from

multilayered viscoelastic plates to real ultrasonic transducer excitation. The most complicated

one has been given in section 3.4 where the steady state harmonic field generated by a finite-

sized transducer is represented as a Fourier integral of the plane waves of the same frequency,

but different angles of propagation. Similarly, the plate response to such an excitation is

obtained in the form of the Fourier integral of the reflected plane wave components. Despite its

generality, however, this theory suffers major drawbacks in practical use. First of all, in order

to model responses of multilayered systems to impulse excitation, the input pulse has to be

firstly Fourier-transformed to the frequency domain, and then, for each harmonic steady-state

process, further decomposition of the finite beam has to be carried out (a single Fourier integral

for the two-dimensional case, a the double Fourier integral for the three-dimensional model).

After solving the plane-wave reflection coefficient problems for each of the wave components,

the inverse Fourier integrals, first in the spatial domain and then the frequency domain, have to

be calculated. As one can clearly see, this poses a very substantial demand on the power of the

computer used. For this reason, only the two-dimensional models were used for the purpose of

the theory validation. The second drawback is that the more general theory is complicated and

cumbersome to use, and therefore a better physical insight into the ultrasonic reflection problem

might be obtained using less sophisticated, and perhaps less general, but simpler models. These

simplified models can be less accurate than the exact one, but they are very handy to use, and

therefore more appealing in practice. However, an awareness of their limitations have to be

born in mind, as limits of applicabilty are inherent parts of the simplified theories.
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The infinite plane wave reflection coefficient model is one of the simplified theories used in this

chapter. Here, the transmitter and receiver are treated as infinite planes, or in other words, the

sizes of the transducers are considered as second order factors and are therefore disregarded.

When a reliable measurement procedure is established and the theoretical models derived, the

most important question is the degree of agreement between the two. First of all we would like

to know how good the most sophisticated theory is in comparison with the measurements and,

if discrepancies are encountered, where the differences come from. Then, the simplified theory

can be validated against the measurements and the more accurate theory. The intention of this

chapter is to give a quantitative answer to these problems.

In section 5.2 the methodology of the reflection coefficient measurements at oblique incidence

is given in detail. Descriptions of the measurement rigs, the transducer arrangements, as well as

the electronic equipment and data processing procedures are given.

In section 5.3 one of the experimental procedures described in section 5.2 is used to measure

the reflection coefficient at a water/aluminium interface, which serves here as an example of an

easily accessible interface. The theoretical predictions using the infmite plane wave model and

the finite transducer theory are compared with the measurements.

In section 5.4 measurements of the reflection coefficients from an aluminium/water interface are

performed. This is the first example of the embedded interface problem, where the

measurement procedure has to take into account different angles of refraction of different

waves, and the pulse reverberations within the plate. The measurements are compared here with

the finite transducer and the infinite plane wave models.

In section 5.5 the system comprising a very thin silicone fluid layer between two glass plates is

analysed both experimentally and theoretically. Comparisons between the theoretical predictions

and the measurements at some chosen angles of incidence are presented to establish the validity

of the theoretical models, as well as the accuracy of the experiments.

Section 5.6 summarises the main points of the chapter.

5.2 Methodology of the reflection coefficient measurements

In section 2.3, the reflection coefficient was defined as the ratio of the amplitudes of the

reflected harmonic plane waves to the amplitudes of the incident harmonic plane waves. Thus
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the reflection coefficient measurement procedure can be performed in two stages. Firstly, in

order to measure the incident wave, a reference signal can be captured in a face-to-face

transducer arrangement as shown schematically in fig. 5.1(a). Subsequently, the probes can be

arranged as shown schematically in fig. 5.1(b), so that the transmitter and receiver are inclined

at a given angle 0 with respect to the perpendicular to the interface. Division of the spectrum of

the reflected signal by the spectrum of the reference signal then yields a reflection coefficient
spectrum for a given angle of incidence 0 and a given frequency range.

5.2.1 Description of the measurement rig

In order to be able to measure oblique incidence reflection coefficients a mechanism for the

probe arrangement was designed and manufactured. Let us illustrate the concept behind the

design of the mechanism. Figure 5.2 shows two ultrasonic transducers, transmitter and

receiver, attached to two arms, the right arm and the left arm, which are in turn attached to a

bearing which is the common axis of rotation for the two arms. Both transducers are positioned

so that they point towards the axis of rotation of the arms. It can clearly be seen from the

drawing that both transducers point towards the axis of rotation of the arms regardless of the

angle, 0, they make with the line perpendicular to the specimen. If the top face of the specimen

lies in the plane of the axis of rotation of the arms, then the transmitter and the receiver are
directed towards the same point on the face of the specimen regardless of the angle 9. This in

turn means that the xflection coefficients from free surfaces can be measured at different angles

of incidence by simple adjustments of the angle 8, and without any repositioning of the

specimen. The specimen, however, has to be carefully positioned before the first measurement

is taken, as its top surface must lie in the plane of the axis of rotation of the arms and be

perpendicular to the vertical plane which bisects the angle between the arms. Therefore, the

measurement rig has to be capable of fine adjustments of the the specimen's vertical position,
(translation along the y direction), pitch (0 rotation), as well as roll (8 rotation).

Figure 5.3 shows the drawing of the reflection coefficient meter (RCM). The whole rig can be

divided into three separate mechanisms, the first being the arm and the transducer holder

mechanism, the second the lead screw and follower mechanism, and the third one the specimen

positioning table mechanism.

As described above, the arm and the transducer holder mechanism is responsible for the

accurate and reliable positioning of the ultrasonic probes. The axis of rotation of the two arms is

near the base of the RCM, where a large diameter bearing can be seen. This bearing is the most

important element of the RCM design, as it is required that the two transducers stay in plane

regardless of the angle of inclination of the arms.
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The lead screw and follower mechanism is responsible for the rotation of the arms so that the

angle of incidence of the transducers can be adjusted. The main requirement here is that the

positional links are of the same length and the follower path is a straight line passing through

the axis of the main bearing.

The specimen positioning mechanism is responsible for the adjustment of the position of a

specimen before the reflection coefficients are taken. As described previously, the mechanism

can rotate a specimen about two perpendicular axes (pitch and roll), and can change its

elevation.

5.2.2 Electronic equipment used

The electronic equipment used for the reflection coefficient measurements can be divided into

three main parts, the first being responsible for the dynamic excitation and reception of the

response from the specimen under test, the second one is the data acquisition unit, while the

third performs signal processing of the incoming data (see fig. 5.4).

The system used for the dynamic excitation and reception of the response from the tested

specimen comprises the pulser-receiver and a pair of ultrasonic transducers. The pulser

generates short duration electrical spikes, hundreds of volts high, which are converted into

acoustic pulses by the transmitting ultrasonic transducer. The receiving ultrasonic probe

converts the acoustic pulses coming from the system under test into electrical pulses which, in

turn, are amplified to obtain signals whose amplitudes are of the order of one volt.

A digital oscilloscope has been used as the data acquisition unit. It converts the data coming

from the pulser-receiver system into digital format, which can be stored in a file or processed.

A desktop IBM PC compatible microcomputer has been used for the signal processing. The

microcomputer also controls the digital oscilloscope and other peripheral devices like plotters

and printers.

5.2.3 Description of data processing sequence

The reflection coefficient is defined as the ratio of the amplitude of the reflected wave to the

amplitude of the incident wave. In experimental work, the reflection coefficient is obtained in

two stages. Firstly the transmitter and receiver are carefully arranged face-to-face, as shown in

fig. 5.1(a), and a pulse transmitted between them is captured. This pulse can be regarded as the
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reference signal with respect to which reflected signals can be assessed. After the specimen has

been mounted on the table, carefully aligned, and the angle of the probes adjusted (see fig.

5.1(b)), the reflected pulse is captured and a Fast Fourier Transformation is performed on it.

The division of the spectrum of the reflected pulse by the spectrum of the reference pulse yields

the reflection coefficient curve in the frequency domain. Figure 5.5 shows schematically the

data processing sequence described above. Examples of the reference signal and the reflected

pulse signal are given in section 5.3, where the ultrasonic reflectivity from a water/aluminium

interface is measured.

5.3 The reflection coefficient from the water/aluminium interface

The water/aluminium interface reflection coefficient is the first of several systems used in this

thesis for comparison between the various theoretical models and the measurements. The choice

to run the first comparison on the water/aluminium system is rather natural. Indeed, the

measurements of reflections from exposed surfaces are relatively straightforward; they are

much less complicated than measurements from the embedded interfaces. From the theoretical

point of view, the water/aluminium system involves modelling the reflection coefficient

between two semi-infinite half-spaces, which is one of the simplest cases to compute.

5.3.1 Theoretical predictions using the infinite plane wave model and totally

elastic media

In order to find out what we should expect to get from the measurements in terms of amplitude

variation at different angles of incidence, let us first investigate the water/aluminium interface

reflectivity theoretically. Figure 5.6 shows the calculated reflection coefficient curve as a

function of angle of incidence for a water/aluminium interface when assuming a single infmite

plane wave on the boundary. The water is modelled here as an inviscid liquid, and the

aluminium as a totally elastic solid. From fig. 5.6 it can be seen that there are three important

angular ranges featuring different states of the reflected and transmitted fields.

The first angular zone is between zero and about 13 degrees. Here the transmitted field (the

field in aluminium) consists of simple plane longitudinal and shear waves where the

wavenumbers are real vectors. In other words both longitudinal and shear waves propagate

from the interface carrying energy away from the boundary.

The next angular zone is the incidence range between approximately 14 and 28 degrees. In this

range, by Snell's law, the wavenumber of the longitudinal wave in the aluminium is complex,
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while the wavenumber of the shear plane wave in the aluminium remains real. This means that

the longitudinal wave becomes inhomogeneous and does not propagate from the interface, but

moves in the direction parallel to the boundary. As in the angular range 0 - 13 degrees, the

shear wave is homogeneous and capable of taking some energy away from the boundary.

The third angular range lies between 29 and 90 degrees, where both longitudinal and shear

waves are inhomogeneous. Here both kinds of waves propagate in the direction parallel to the

interface making it impossible to take the energy away from the boundary. Therefore this

angular range is called the range of total internal reflection as the energy input from the incident

wave is returned back to the fluid making the reflection coefficient equal to unity.

5.3.2 Measurements

A 25 mm thick aluminium block was used to measure the reflection coefficient from a single

interface (see fig. 5.7). The data processing procedure used for this experiment is simple and

involves division of the pulse reflected from the interface by the reference pulse captured in the

face-to-face arrangement of the probes at the beginning of the measurement session or

immediately alter it.

Figure 5.8(a) shows the time history of the reference pulse obtained during the measurements,

which were carried out using a pair of the 10 MHz Rolls-Rcyce Mateval wideband transducers.

The characteristics of spectrum of the reference signal, shown in fig. 5.8(b), are typical for

current good quality ultrasonic probes. The centre frequency is around 9.5 MHz, while the

useful bandwidth for accurate measurements lies between about 7 MHz and 14 MHz.

Figure 5.9(a) shows the time history of the pulse reflected from the water/aluminium interface

when the transmitter and receiver were inclined at an angle of 20 degrees with respect to the

normal to the interface (see fig. 5.7).

The division of the reflected pulse spectrum of fig. 5.9(b) by the reference spectrum of fig.

5.8(b) yields the reflection coefficient for the angle of incidence of 20 degrees. Figure 5.10

shows the result of the division. Here it can be seen that in the useful frequency range (between

4 MHz and 14 MHz), the measurement is less noisy than anywhere else, and therefore, it

makes sense to take the measurements only in this frequency band. It is now possible to divide

this frequency range into ten 1 MHz wide intervals, and plot the average values of the reflection

coefficient for each of the intervals. For the angle of 20 degrees the values of the reflection

coefficient are almost the same indicating that at this angle of incidence the reflection

phenomenon is frequency independent.
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Applying the procedure described above, it is possible to obtain the reflection coefficient curves

for different angles of incidence and different frequency bands. Figure 5.11 shows the results

of measurements performed for angles of incidence in the range between 9.5 and 40.0 degrees.

At the angle of incidence of 9.5 degrees the transmitter and receiver were touching each other. It
(

was therefore impossible to measure the reflection coefficient below 9.5 degrees. The,urve

is the average value of the reflection coefficient in the frequency band

between 4.5 and 5.5 MHz, while the curve, has been obtained for the

frequency band between 7.5 and 8.5 MHz.

5.3.3 Comparison between the infinite plane wave theory and the

measurements

Comparing the theoretically calculated curve (see fig. 5.6) with the measured one (see fig.

5.11) it can be seen that agreement is good everywhere except for the angular range in the

vicinity of the longitudinal critical angle and the angular range between about 28 and 33

degrees, where the Rayleigh mode is excited. It was therefore necessary to improve the

theoretical model to account for this phenomenon, since the confidence in the measurement was

high.

5.3.4 Refinement of the infinite plane wave model to inclu4e viscoelastic

effects in the aluminium

Figure 5.12 shows the reflection coefficient curve for the aluminium/water interface assuming

no attenuation in water, small attenuation in aluminium (longitudinal attenuation 0.002 nepers

per wavelength, shear attenuation 0.0002 nepers per wavelength, frequency 7 MHz) and a

single infinite plane wave input. Comparison between fig. 5.12 and fig. 5.6 clearly shows that

the inclusion of small attenuation in the solid affects the reflection coefficient amplitude around

the Rayleigh angle, but only by a small amount. Therefore, the damping in the aluminium was

increased in order to reach agreement between the plane wave theory and the experiments. In

order to do so, the influence of longitudinal and shear wave attenuation on the reflection

coefficient was studied.

Figure 5.13 shows the variation of the reflection coefficient due to different shear attenuation in

aluminium. Here the longitudinal attenuation was removed from the model, and the shear

attenuation set at 0.0001, 0.00 1, 0.01, and 0.05 nepers per wavelength. The frequency of the

incident wave is 7 MHz. From fig. 5.13 it can be seen that the shear attenuation does not affect

the reflection coefficient amplitude around the longitudinal critical angle, but strongly influences
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the depth of the dip at the Rayleigh angle.

Fig. 5.14 shows the angular variation of the reflection coefficient due to the different

longitudinal attenuation in the aluminium. This time, the shear attenuation was removed from

the system, while the longitudinal attenuation was set at 0.001, 0.01, 0.1, and 0.2 nepers per

wavelength. The frequency of the incident wave is 7 MHz. The figure shows that the

longitudinal attenuation affects the reflection coefficient both in the vicinity of the longitudinal

critical angle and around the Rayleigh angle.

The influence of the material damping on the reflection coefficients in the vicinity of the critical

angle has been reported in a number of papers (see for example Becker and Richardson 1970,

1972)

To achieve agreement between the measurement and the theory, firstly the longitudinal

attenuation was set so that the amplitude of the reflection coefficient around the longitudinal

critical angle (13.45 degrees) was reduced from 1.0 for the non-attenuating system (see fig.

5.6) to about 0.93 (see fig. 5.11), as the longitudinal attenuation is solely responsible for that

change (see fig. 5.13). Subsequently, the shear attenuation was chosen to obtain the required

dip in the vicinity of the Rayleigh angle. The attenuation coefficients were found to be 0.1 and

0.02 nepers at 7 MHz for the longitudinal and shear waves respectively.

Figure 5.15 shows the result of "tuning" the longitudinal and shear attenuation coefficients in

the viscoelastic model, so as to obtain good agreement with the experimental results in fig.

5.11. Good agreement between the two curves can be seen. However, the coefficients obtained

in this way are far too high for aluminium and hence the depth of the dip at the Rayleigh angle

and the reduction of amplitude at the longitudinal critical angle must be due to some other

physical phenomenon. The results shown above indicate that the infinite plane wave theory

cannot fully explain the observed behaviour and it will be shown in the next section that it needs

to be refined to include the finite dimensions of the transmitter and receiver.

5.3.5 Theoretical calculations using the finite transducer model predictions

Figure 5.16 shows the variation of the reflection coefficient at a frequency of 7 MHz, as a

function of angle of incidence for a pair of finite transducers obtained using the model

discussed in chapter 3. The longitudinal and shear wave attenuation in aluminium was 0.002

and 0.0002 nepers per wavelength. The theoretically obtained curve agrees well with the

experimental results shown in fig. 5.11.
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Comparing the reflection coefficient curve obtained from the infinite plane wave theoiy (see fig.

5.12), and the same curve obtained using the finite transducer model (see fig. 5.16), a marked

reduction of the amplitude around the longitudinal critical angle and a considerable increase of

the dip magnitude at the Rayleigh angle can be seen.

It can be shown that the decrease in the received signal is caused by the nonspecular reflection

of the bounded beam. Here, the receiving transducer 'misses' part of the reflected field and

therefore does not capture the whole reflected signal. This phenomenon has been reported in a

number of papers, see for example the experimental work done by Neubauer (1973), Breazeale

et al. (1974, 1977), and the theoretical work done by Bertoni and Tamir (1973).

To illustrate this phenomenon the spatial variation of the reflected field along the

aluminium/water interface was calculated for an incident beam 10 mm wide, and Gaussian

variation of the field amplitude across the beam. Figure 5.17 shows the displacement

component normal to the face of the receiver for the arrangement of the probes shown

schematically in fig. 2.14. The horizontal axes in fig. 5.17 correspond to the x 1 axis of the

receiver coordinates in fig. 2.14, but their directions are opposite to that shown in fig. 5.17.

The vertical axes in fig. 5.17 are the amplitudes of the displacement field in the direction of x;

axis of the receiver coordinates in fig. 2.14.

The frequency of the incident field and the damping coefficients within the aluminium are the

same as used for the calculations presented in figures 5.16 and 5.12.

Figure 5.17(a) shows the profile of the reflected field at normal incidence and the reference field

which was obtained setting the reflection coefficient equal to unity. The reflected field has the

same distribution of displacements as the reference signal and it is effectively the incident field

multiplied by the infinite plane wave reflection coefficient for normal incidence which is about

0.84 (see fig. 5.6). From fig. 5.17(a) it can be seen that at normal incidence the reflection is

specular.

Figure 5.17(b) shows the reflected field at the longitudinal critical angle. Here it can be seen

that the shape of the reflected beam is somewhat changed. Indeed, some non-specular reflection

takes place, caused most probably by the presence of the inhomogeneous longitudinal wave. At

the longitudinal critical angle the longitudinal wave becomes inhomogeneous, being capable of

transmitting energy in the direction parallel to the interface. The presence of water at the

boundary causes the inhomogeneous wave to 'leak' the energy back to the water causing the

visible deformation of the reflected field by superimposing the leaky type of radiation which

decays exponentially along the interface. If the receiver is positioned to capture the specular
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(geometric) reflection only, then clearly, some reduction in the signal amplitude will take place.

Figure 5.17(c) shows the reflected field at an angle of incidence of 16.5 degrees, which is

about 3 degrees higher than the longitudinal critical angle. From this figure it can be seen that

the reflection is specular. The longitudinal wave is inhomogeneous here, and therefore

transmits some energy along the interface. The energy transmission of an inhomogeneous wave

is closely related to the magnitude and the extent of the displacement field due to that wave. The

bigger the amplitude and the extent of the field, the better the energy transmission. The

displacement field due to the inhomogeneous wave vanishes exponentially in the direction

perpendicular to the interface in the aluminium. The bigger the incidence angle above the critical

angle the more rapid the amplitude decay within the aluminium and therefore the energy

transmission in the direction parallel to the interface is smaller.

Figure 5.17(d) shows the reflected field at an angle of incidence of 25.0 degrees. It can be seen

that the reflection is specular here. The reflected field can be obtained by multiplication of the

reference reflection (see fig. 5.17(a)) by the reflection coefficient calculated for the infmite plane

wave excitation.

Figures 5.17 (e), (f) and (g) show the reflected field around the Rayleigh angle. From these

figures it can be seen that in the vicinity of this angle non-specular reflection takes place. Figure

5.17(t) shows the field at the Rayleigh angle (30.45 degrees). Here, the reflected field consists

of the specular (geometrical) reflection part and the leaky Rayleigh wave part, which increases

quickly within the specular reflection range and then decays exponentially along the interface in

a leaky wave manner. These two components are out of phase with respect to each other and

therefore some cancellation of the signal within the specular reflection range takes place. The

maximum intensity of the reflected signal shifts to the right and a significant part of the overall

signal is therefore not received by a transducer if it is placed to receive specular reflections.

Moreover, as the specular reflection component is out of phase with the leaky Rayleigh wave

component, the integral of the displacement field over the receiver's face may cancel to zero for

a given width and frequency of the incident beam.

Figure 5.17(h) shows the reflected field at an angle of incidence of 35.0 degrees. The reflection

is specular here and the amplitude of the field is almost equal to the amplitude of the reference

field giving a reflection coefficient value almost equal to unity.

Figures 5.18 (a) - (d) show the reflected field at the Rayleigh angle for beamwidths varying

between 5 mm and 40 mm for the frequency of excitation of 5 MHz. The figures show that the

position of the peak with respect to the central line does not appear to be a function of the beam
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width.

Figure 5.19 shows the reflected field at the Rayleigh angle for different frequencies of the

incident field. The beam was 10 mm wide and had a Gaussian variation of displacement across

its width. Figures 5.19 (a), (b), (c), (d), (e), (f), (g), (h) show the field at 2 MHz, 4 MHz, 6

MHz, 8 MHz, 10 MHz, 15 MHz, 25 MHz, and 50 MHz respectively. From these figures it can

be seen that the beam displacement is larger for lower frequencies and therefore the finite beam

reflection coefficient will be strongly frequency dependent here. For higher frequencies, the

shift is less pronounced causing the reflection coefficient to increase with frequency. This

argument does not take into account the variation of the damping coefficients within the

aluminium which are also frequency dependent. Therefore the reflection coefficient will be

affected by two independent factors. Firstly, the frequency variation of the longitudinal and

shear damping coefficients can cause changes in the reflection coefficient at the longitudinal

critical angle and the Rayleigh angle as has been shown in figures 5.13 and 5.14. Secondly, the

non-specular reflection phenomenon strongly affects the measured reflection coefficient around

these angles. The non-specular reflection effect is dependent on the incidence beamwidth and its

frequency as has been shown in figures 5.18 and 5.19.

It can be also seen from fig. 5.19 that the Rayleigh wave leaks energy more rapidly at higher

frequencies.

The numerical results shown in figures 5.17, 5.18 and 5.19 are in close agreement with the

theoretical and numerical work done by Ngoc and Mayer (1979, 1980), Nayfeh and Chimenti

(1984).

The theoretical and experimental investigations conducted in this section lead us to conclude that

the infinite plane wave theory can be successfully used to predict reflection coefficients from

single interfaces as long as the angle of incidence is not in the vicinity of the Rayleigh angle. At

the Rayleigh angle the leaky surface wave is generated, which is capable of carrying energy

along the interface. The energy, carried away from the area isonified by the transmitter, is

subsequently re-radiated ('leaked') back to the fluid as the Rayleigh wave propagates.

Therefore, the presence of the leaky surface wave alters the composition of the reflected beam

and shifts the reflected beam so that a non-specular reflection phenomenon takes place (see fig.

5.17(f)). Here the use of the finite beam model is essential to predict the behaviour of the

system quantitatively. A small beam shift and the effect of energy 'leaking' can be also seen the

longitudinal critical angle (see fig. 5.17(b)). Therefore, also at the longitudinal critical angle the

finite transducer model should be used for quantitative predictions of the reflection coefficient
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5.4 The reflection coefficient from an aluminium/water interface

In this section measurements and theoretical investigations of the ultrasonic reflection

coefficient from the aluminium/water interface are discussed. As the interface used for the study

here is the same as that of section 5.3, the work presented here can be considered as a

continuation of the previous section. Indeed, from the theoretical point of view, the

aluminium/water reflection coefficient again involves two sen,i-infinite half-spaces, one of them

aluminium and the other water. The calculations of reflection coefficient have to be conducted

here in terms of the incident and reflected waves in the aluminium half-space rather than the

water half-space as was in case of the water/aluminium system analysed in section 5.3.

5.4.1 Measurement technique and theoretical predictions.

The experimental work with the aluminium/water system poses some complications which were

not encountered in section 5.3. Because the incident waves have to hit the boundary from the

side occupied by the solid, the transmitter has to be positioned on the side of the solid half-

space rather than the liquid half-space. It is therefore necessary to use an aluminium plate of

fmite thickness, and to rely on the refracted waves within the aluminium plate to deliver the

ultrasonic pulse to the interface.

Figure 5.20 shows schematically the idea adopted here to carry out the measurements. The

pulse generated by the transmitter, incident on the top surface of the aluminium plate at the

chosen angle of incidence 0, generates the refracted wave within the solid at the angle of

incidence 01, related to 0 by Snell's law. The refracted wave hits the aluminium/water at the

angle 81 and is reflected back towards the top surface of the plate. Subsequently, the pulse

transmitted from the plate back to the water is received by the receiver.

The amplitude of the signal at the receiver is defined by the amplitude of the wave generated by

the transmitter, the transmission coefficient across the water/aluminium interface at the angle of

incidence 0, the reflection coefficient from the aluminium/water interface at the angle of

incidence 01, and finally, the transmission coefficient across the aluminium/water boundary at

the angle of incidence 8. It can clearly be seen here that, in order to quantitatively measure the

reflection coefficient from the bottom boundary, the transmission coefficients across the top

boundary have to be known beforehand.

Another very important problem here is the arrangement of the transmitter and receiver with

respect to each other. From fig. 5.20, it can be seen that the receiver has to be positioned at
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exactly the right position in space to capture the reflection coming from within the plate, and

this position is determined by the thickness of the plate and angles at which the waves

propagate in the water and in the aluminium. Note that the refracted wave and the reflected

wave can be either longitudinal or shear, as the solid medium supports these two types of bulk

waves. Let us discuss this problem in more detail.

Figure 5.21 shows a more detailed picture of the measurement concept described in fig. 5.20.

The transmitter generates a longitudinal pulse in water which, at the top surface of the plate,

generates the reflected pulse denoted by the abbreviation FF, and two refracted waves, one of

them being the longitudinal wave, and the other one shear. These two waves propagate in the

direction towards the bottom of the the plate. At the aluminium/water interface, the incident

longitudinal wave mode-converts into reflected longitudinal and shear waves. Each of the

incident shear and longitudinal waves mode-convert into longitudinal and shear waves

propagating in the upward direction towards the receiver. Therefore, there are four different

pulses coming from the back of the plate: the shear-shear (SS) reflection, the shear-longitudinal

(SL) reflection, the longitudinal-shear (LS) reflection, and the longitudinal-longitudinal (LL)

reflection, the amplitude of each of them depending on the corresponding reflection coefficient

for the aluminium/water interface. All the four reflected pulses propagate towards the top

surface of the aluminium plate, where all of them are partially mode-converted to longitudinal

pulses in water. Because the longitudinal wave in solids is about twice as fast as the shear

wave, the different reflections coming from the back of the plate arrive at different times at the

face of the receiver. The angles of refraction for the longitudinal and shear waves are also

different, which means that the two types of waves do not follow the same path within the

plate. This means that the reflections coming from the bottom interface emerge from the plate at

different points. Note that the LS and SL reflection arrive at exactly the same time at the

receiver, and also appear at exactly the same position in space. The two different pulses

therefore merge to form a single pulse, which will be denoted as LS+SL reflection.

From the comments above one can deduce that in order to successfully receive the reflection of

our choice from the back of the plate, the position of the receiver has to be carefully adjusted

with respect to the transmitter. Indeed, fig. 5.21 shows the receiver positioned to capture the

LS+SL reflection. If, for example, the FF reflection was to be captured then the receiver would

have to be moved to the position marked with the dashed line.

A 4.85 mm thick aluminium plate was chosen for the experiments. The plate density as well as

the longitudinal and shear velocity were measured prior to the experiments using the technique

described in Appendix A. The longitudinal and shear attenuation in aluminium were assumed.

The shear velocity and attenuation in water were calculated using Navier-Stokes equations as
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shown in Appendix B. The longitudinal attenuation in water was assumed. Table 5.1 shows the
acoustic properties of the plate and water taken for theoretical predictions.

material	 density	 longitudinal	 longitudinal	 shearshear velocityattenuation attenuation
(kgm3)	 velocity (mis)	 (nepers)	 (m/s)	

(nepeis)

aluminium	 2820	 6330	 0.01	 3120	 0.02

water	 1000	 1495	 0.001	 10	 6.28

Table 5.1 Acoustic properties of materials used for theoretical predictions

It was decided that the comparisons would be conducted at two angles of incidence: 10 degrees

and 20 degrees. Using the material properties of table 5.1, it is possible to calculate the angles

of refraction within the aluminium plate, as well as the time of arrival of the LL, LS+SL, and

SS pulses with respect to the front face reflection, FF. Table 5.2 shows the results of such
calculations, and fig. 5.22 shows the time domain simulation of the response from the plate
being excited at the angle of 10 degrees in water using the infinite plane wave theoiy.

Angle of incidence at 	 Time of arrival wrt FFT)pe of reflection	 aluminium/water	
()

____________	 (degrees)	 ____________

IL1	 longitudinal: 47.3	 1.04

(LS+SL)1	 longitudinal: 47.3	 1.97
shear: 21.2

LL2	 longitudinal: 47.3	 2.08

SS1	 shear: 21.2	 2.90

((LS+SL) 1 1_L)i	 longitudinal: 47.3	 3.01
shear: 21.2

L1_3	 longitudinal: 47.3 	 3.12

Table 5.2 Angles of refraction and times of arrival of different reflections coming from the back of the
4.85 mm thick aluminium plate. Angle of incidence in water 10.0 degrees.

From table 5.2 and fig. 5.22 it can be seen that the LL1 pulse comes first after the FF pulse,

with a delay of 1.04 p.s. The (LS^SL)1 pulse comes next but only a fraction of a microsecond

before the second reverberation of the LL reflection. Indeed, the delay of the (LS^SL)1 pulse
with respect to FF is 1.97 ps, and the delay of the LL2 pulse is twice the delay of the LL1
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pulse, that is, 1.04 x 2 = 2.08 ps. Therefore, the LL2 pulse arrives only 0.11 Jts behind

(LS+SL)1 pulse, and the two pulses are superimposed if standard 10 MHz probes are used for

the experiments. A similar situation happens with the first shear-shear reflection. From table

5.2 it can be seen that two other pulses have a very similar time of arrival to that of SS1. The

LL3 pulse arrives only 0.22 p.s behind SS1, and the ((LS+SL)1 LL)1, which is the LS+SL

reflection in the first traverse followed by the LL reflection in the second traverse, arrives 0.11

p.s behind SS1. If 10 MHz probes are used for the experiments, then the pulses generated by

the transducers are about 0.20 ps long, which means that the SS1, ((LS+SL)1 LL)1, and LL2,

superimpose. Indeed, fig. 5.22 shows that this is the case.

5.4.2 Experiments

The experimental set up used here is described in detail in section 5.2 of this chapter. A pair of

10 MHz Rolls-Royce Mateval probes were used here as the transmitter and receiver. The

measurements were carried out for two different angles of incidence, 10 and 20 degrees, the
transducers being arranged to receive the FF, LL1, (LS+SL)1, and SS1 reflections in turn.

Angle of incidence of 10 degrees

Figure 5.23 shows the response of the 4.85 mm thick aluminium plate to pulse excitation at an

angle of incidence of 10 degrees in water. The transducers were arranged to receive FF

reflection, as shown schematically with the dashed line in fig. 5.21. Comparing fig. 5.23 with

5.22 it clearly can be seen that the two plots do not look similar at all. The front face reflection

(FF), on which the probes were focussed, looks very similar on both plots. However, the

reflections which follow FF are much smaller in fig. 5.23 than in fig. 5.22. These differences

can be explained looking at fig. 5.21, where the spatial positions occupied by different

reflection are schematically shown. Here it can be seen that, if the receiver is positioned to
capture the FF reflection, then the probe 'misses' the zones isonified by LL1, (LS+SL)1, and

SS1 reflections, which appear further to the right in fig. 5.21. The biggest reduction in

amplitude is experienced by LL1 as it is farthest away from the receiver. All the other

reflections coming after SS1 practically miss the receiver entirely and therefore do not appear in

fig. 5.23.

From figures 5.21, 5.22, and 5.23 it can be seen that the infinite plane wave model is not

capable of predicting the oblique incidence responses from the aluminium plate even

approximately. It is therefore important to investigate whether the finite transducer model can

bring us closer to the reality. Figure 5.24 shows the theoretically calculated response from the

4.85 mm thick aluminium plate in water to pulse excitation at the angle of 10 degrees in the
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liquid. The fmite transducer model was used here to calculate the time history. The dimensions

of the transducers as well as their combined frequency response was measured prior to the

calculations and used as the input to the model together with the acoustic properties of the plate

and water, given in table 5.1. The transmitter and receiver were positioned in the model in

exactly the same fashion as during the measurement, that is to receive the FF reflection

primarily. Comparing figures 5.23 and 5.24 it can clearly be seen that the finite transducer

model can accurately predict the response of the plate to finite transducer excitation. This is not

the case when the infinite model is used (see fig. 5.22).

When the receiver is moved to receive primarily the SS1 reflection (see fig. 5.25(a)) then the

front face reflection becomes smaller as it is partially 'missed'. At the same time LL1, and

(LS+SL) i reflections become larger because the receiver is closer to the areas isonified by

them. The shear-shear reflection is still very small in comparison with the others because the

mode conversion from the longitudinal wave in water to the shear wave in the aluminium and

then back from the shear in the aluminium to the longitudinal in the liquid is very weak.
Therefore, despite the best conditions for the reception of the SS1 reflection, its apparent

amplitude is strongly affected by the other pulses coming from the back of the plate at a similar
time to the SS1 pulse (see table 5.2). Figure 5.25(b) shows the finite transducer predictions for

the case showed in fig. 5.25(a). Excellent agreement between the measurements and predictions

can be seen.

Figure 5.26 shows what happens when the transducers are focussed on (LS+SL)1 reflection.

The arrangement of the probes or this particular case is schematically shown in fig. 5.21. In

fig. 5.26(b) the measured response of the plate is shown. Here, further reduction of the FF

reflection can be seen (note the different vertical scale to those of the previous figures), while
the (LS+SL)1 reflection amplitude substantially increased. Figure 5.26(b) shows the results of

the theoretical predictions for this arrangement of the transducers, again demonstrating excellent

agreement between the finite transducer theory and the experiment.

The last case left for the comparison is the situation when the transducers are positioned to

receive the longitudinal-longitudinal reflection from the aluminium/water interface. Figure

5.27(a) shows the measurement performed for this case. From the figure it can be seen that the

FF reflection has been reduced to a very small amplitude, and its signature is drastically

distorted. This is because the receiver is further away from the area isonified by the FF pulse,

and the transducer 'catches' only some parts of the beam. In fig. 5.27(b) the same case has

been reproduced theoretically using the finite transducer theory. Excellent agreement in terms of

the time of arrival for each of the reflections as well as their relative amplitudes can be

appreciated. However, the FF pulse shape in fig. 5.27(b) is somewhat different than that
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obtained in the experiment, shown in fig. 5.27(a). This kind of discrepancy can be expected

here since the receiving transducer is positioned at the fringe of the area isonified by the FF

beam. In such circumstances small differences in the displacement pattern at the face of

transmitter can produce visible changes in the signature of the signal captured by the receiver.

In the theoretical predictions shown here a Gaussian displacement pattern at the face of the

transmitter was assumed (see figures 2.7(a), 2.8(a) and 2.9(a)), and no attempt was made to

alter the displacement pattern function to match that of the real transducer.

Angle of incidence of 20 degrees

The comparisons between the measurements and theory is now continued for the excitation

being at an angle of incidence of 20 degrees in water. Table 5.3 shows the times of arrival of

reflections coming from the back of the aluminium plate. Because the angle of the incident wave

is above the longitudinal critical angle, the longitudinal wave is inhomogeneous here, and LL

reflections do not exist in practice. The (LS+SL) reflections do not exist either because they,

like the LL pulses, rely on the longitudinal wave to propagate towards or away from the

aluminium/water interface. The only wave left to propagate in the aluminium is the shear wave,

and the only reflection from the aluminium/water interface which can be received and measured

here is the SS pulse.

Angle cf incidence at	 Time of arrival wrt FFType of reflection 	 aluminium/water
(ps)____________	 (degies)	 ____________

LL	 wave inhomogeneous	 N/A

SS 1	shear: 45.5	 2.18

SS2	shear: 45.5	 4.36

Table 5.3 Angles of refraction and times of arrival of different reflections coming from the back of the
4.85 mm thick aluminium plate. Angle of incidence in water 20.0 degrees.

Figure 5.28 shows the time domain prediction of the response of the 4.85 mm thick aluminium

plate in water to a pulse excitation, incident from the water half-space at the angle of 20.0

degrees. The infinite plane wave theory was used to generate the curve of fig. 5.28. As

discussed above, the only type of wave able to propagate here is the shear wave. Figure 5.28

shows the SS reflections coming from the back of the plate. All of them are equally spaced in

time, the delay between them being 2.18 is.

To compare the results of the infinite plane wave theory with the experiment, fig. 5.29(a)
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shows the measured response from the aluminium plate at 20 degrees. The receiver was

positioned in the middle of the area isonified by the front face reflection and misses a significant
part of the area isonified by the SS1 beam. The higher order SS reflections emerge from within

the plate further away from the receiver and therefore they are not present in fig. 5.29(a) at all.

Figure 5.29(b) shows the finite transducer predictions for the case presented in fig. 5.29(a).

Comparing fig. 5.28 with 5.29(a), and 5.29(b) it can be seen that the infinite plane wave model

is not capable of predicting the aluminium plate response to a realistic excitation, while the finite

transducer model gives a very accurate account of what should be expected in practice.

The last figure presented in this section is the comparison between the finite transducer model
with the experiment when the receiver is positioned to capture the SS1 reflection. Figure

5.30(a) shows the result of the experiment for this case. The amplitude of the front face

reflection is much smaller here than that of fig. 5.29 because the receiver misses a significant
part of the FF beam. However, the apparent amplitude of SS1 reflection increased here

substantially. It is interesting to note that in fig. 5.30(b) the receiver captures a little of the SS2

reflection, which is not the case in fig. 5.29, when the receiver was positioned to measure FF

primarily. Comparing the experimental results of fig. 5.30(a) with the theoretical predictions

using the finite transducer model shown in fig. 5.30(b), again, excellent agreement between

both plots can be seen.

5.5 The reflection coefficient from a thin silicone layer in glass

In this section a theoretical and experimental investigation of the ultrasonic reflectivity from a

thin silicone layer in glass is described. The case of the thin liquid layer between two solid

plates is the next logical step towards quantitative reflection measurements from the interfaces in

the adhesive joints. Indeed, the glass plate/thin silicone layer/glass plate system is as

complicated theoretically and experimentally as the aluminium plate/thin oxide layer/epoxy layer

system in adhesive joints. For the purposes of the comparison of the theory with the

measurements, however, the glass/silicone/glass system is very convenient. The mechanical

properties of the glass plates and the silicone fluid can be accurately measured before making

the glass plate/thin silicone layer/glass plate system ready for the experiments. The measured

material properties can then be used for the theoretical predictions of the system response to

normal and oblique incidence excitation.

5.5.1 Specimen

Figure 5.31 shows schematically the specimen used for the measurements. It comprises two
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5.85 mm thick glass plates and a veiy thin silicone liquid layer between them. The glass plates

were polished in order to achieve a high degree of flatness before a very small quantity of the

silicone liquid was let between them. The acoustic properties of the glass plates and the silicone

liquid are given in table 5.4. The density of glass and its longitudinal and shear velocity were

measured using the technique presented in Appendix A. The density, the longitudinal velocity

and the kinematic viscosity of the silicone fluid were taken form the manufacturer's

specification sheet. The shear wave velocity and shear wave attenuation in the silicone liquid

and water were calculated from the Navier-Stokes equation, assuming that the kinematic

viscosities of water and of the silicone liquid are 1.0 cSt, and 50.0 cSt, respectively. The details

of the derivations can be found in Appendix B. The longitudinal attenuation in the silicone fluid

and in water were assumed.

material	
longitudinal longitudinal stiear velocityvelocity	 attenuation	

(mis)

	

___________ _______ (mis)	 (nepers) _______ (nepers)

	

glass	 2490	 5808	 0.0	 3466	 0.0

DOW CORNING

	

510	 985	 1050	 0.0	 79	 6.28
silicone fluid

	

waler	 1000	 1495	 0.0	 10	 6.28

Table 5.4 Acoustic properties of the materials used in theoretical predictions.

Before the measurements were started, the acoustic properties and dimensions of all the

components of the system were known apart from the thickness of the silicone layer. Therefore

the idea of the experiment conducted here was first to find the thickness of the silicone layer

using the longitudinal normal incidence reflection coefficient, and then to use the measured

thickness of the layer for predictions of the oblique incidence responses of the system and to

compare them with measurements at few chosen angles.

5.5.2 Measurement of the silicone layer thickness

As has been described in detail in chapter 4, the glass/thin silicone layer/glass system creates no

serious problem as far as the quantitative evaluation of the thickness of the layer is concerned.

Indeed, looking at table 5.4, it can be seen that the longitudinal impedance of the layer (a

density-velocity product) is very different from the longitudinal impedance of the glass. This

makes the longitudinal reflection coefficient from the thin silicone layer to be a strongly

increasing function of frequency. The second very important factor which makes the detection

of the silicone layer possible is that the layer separates two half-spaces of exactly the same
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material, and in such circumstances the normal incidence reflection coefficient is very sensitive

to the layer properties. more detailed discussion of this was given in chapter 4.

The glass/silicone liquid/glass system, shown schematically in fig. 5.31, was submerged in

water, and the system response to normal incidence longitudinal excitation was measured. The

pulse-echo method was used here, which involves the use of a single transducer positioned at

normal incidence to the plate and working as the transmitter and receiver. A 10 MHz wideband

Rolls-Royce Mateval probe of the diameter of 10 mm was used for the experiments. The

distance between the transducer and the tested plate was 45 mm. Figure 5.32 shows the result
of the measurement. There are two reflections present in fig. 5.32, the front face reflection (FF)
from the water/glass interface, and the longitudinal-longitudinal reflection (LL1) coming from

the silicone layer. The amplitude of the FF reflection depends solely on the properties of the the

glass and water and is independent of the properties of the embedded silicone layer interface. It

is therefore convenient to use FF as the reference pulse for the evaluation of the reflectivity
from the silicone layer. This involves the division of the Fourier transform of the LLj reflection

by the Fourier transform of the FF pulse.

Curve 1 of fig. 5.33 shows the result of the spectral division of LL1 by FF of fig. 5.32, while

curves 2, 3, and 4 of fig. 5.33 show the results of theoretical calculations of the longitudinal

reflection coefficient from silicone layers of different thicknesses normalised to the front face

(water/glass) reflection coefficient. The low frequency behaviour of the measured reflection

coefficient: the hump at around 1 MHz and the shallow minimum at about 2 MHz, was ignored

on basis of poor signal-to-noise ratio and a significant beam spread effect at these frequencies.

Since at normal incidence the non-specular reflection phenomenon does not take place, the

infinite plane wave theory was used for quantitative predictions of the reflection coefficient

from the silicone layer. The acoustic properties of the silicone layer and the glass plates were

taken from table 5.4. Curve number 2 of fig. 5.33 was calculated for a 0.15 p.m thick silicone

layer, while curve numbers 3 and 4 correspond to layer thicknesses of 0.17 pm and 0.20 p.m.

Since the infinite plane wave theory was used here for quantitative comparisons with the

experimental data, it is necessary to estimate the error of the theoretical predictions due to the

beam spread effect. Using the technique presented by Papadakis (1972) it is possible to

estimate this error, assuming that the transmitter is a circular piston source. Table 5.5 shows the
calculated diffraction loss for FF and LL1 reflections at different frequencies. Tabulated integral

functions describing diffraction effects in the ultrasonic field of a circular piston source, given

by Benson and Kiyohara (1974), was used here. Table 5.5 shows that the error is larger for

lower frequencies, and is about 9 % at the frequency of 5 MHz.
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Diffraction	 Diffraction	 Diffraction	 Estimated error
Frequency crrection factor correction factor correction factor 	 for

for FF	 for LL 1	for LL1/FF	 LL1/FF

2	 0.739	 0.636	 0.86	 - 14 %

5	 0.807	 0.736	 0.91	 - 9 %

10	 0.848	 0.8 13	 0.96	 -4 %

Table 5.5 Estimated error of the division LL1/FF due to the diffraction loss of the FF and LL1 reflections
when the infinite plane wave theory is used for comparisons with the experimental data.

From fig. 5.33 it can be seen that, using the longitudinal normal incidence technique, it is

possible to determine the thickness of the silicone layer in glass to within a fraction of a micron.
A silicone layer thickness of 0.17 p.m was taken for further comparisons with the experiments

at the oblique incidence.

5.5.3 Comparisons with theory at the oblique incidence

The oblique incidence reflection coefficient measurements were taken at angles of incidence of

10 degrees and 20 degrees in water. The measurements were conducted according to the

general descriptions of the technique given in section 5.2 of this chapter. This involves the

spectral division of the appropriate reflection coming from the embedded glass/silicone/glass

interface by the reference reflection obtained when the probes were arranged face-to-face (see

fig. 5.1). Subsequently, the measurements were compared with the infinite wave theory

predictions using the mechanical properties of the system given in table 5.4, and assuming that

the silicone fluid layer is 0.17 p.m thick. The infinite plane wave theory was used here because

at the angle of incidence of 10 and 20 degrees a non-specular reflection at the water/glass

interface does not take place.

Angle of incidence of 10 degrees

At the angle of incidence of 10 degrees, there are three different reflection coefficients to be

measured, namely LL1, (LS+SL)1, and SS1. Figure 5.21 shows schematically the technique

used to extract the appropriate reflection from an embedded interface. For a more detailed

description of the method refer to section 5.4 of this chapter. Table 5.6 shows the angles of

refraction in the glass as well as the times of arrival of the different reflections coming from the

silicone layer.
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Angle of	 Time of arrival wrt FFType of reflection	 glass/silicone layer	
()____ (-_____

IL1	 longitudinal: 42.4	 1.49

(LS+SL) 1	longitudinal: 42.4	 2.30
shear 23.7

LL2	 longitudinal: 42.4	 2.98

SS 1	shear: 23.7	 3.09

((LS+SL)1 LL)1	 longitudinal: 42.4	 379
shear 23.7

113	 longitudinal: 42.4	 4.47

Table 5.6 Angles of refiction and times of arrival of different reflections coming from the embedded silicone
layer between 5.85 mm thick glass plates. Angle of incidence in water 10.0 degrees.

The transducers used for the oblique incidence experiments were the wideband 10 MHz Rolls-

Royce Mateval probes giving ultrasonic pulses about 0.2 p.s long. From table 5.6 it can be seen

that, if the pulse duration is around 0.2 p.s, very good separation between the LL1, (LS+SL)1,

and LL2 can be achieved. However, the SS1 pulse is in the vicinity of LL2, which may affect

the accuracy of the SS reflectivity measurements, as it is impossible to separate these two

reflections from each other.

Curve number 1 of fig. 5.34 shows the experimentally obtained division of the LL1 reflection

by the reference pulse obtained from the face-to-face arrangement of the probes. Curve 2 of fig.

5.34 shows the theoretically calculated reflectivity (using the infinite plane wave model) at

exactly the same conditions as during the experiments, assuming the layer thickness of 0.17

jim, measured in the normal incidence experiment, and using the acoustic properties given in

table 5.4. Excellent agreement between the two curves can be seen.

Figure 5.35 shows the division of the (LS+SL)1 pulse by the reference signal obtained when

the probes were arranged face-to-face. Curve 1 was obtained experimentally, while curve 2 is

the result of theoretical calculations making use of table 5.4 and setting the layer thickness to

0.17 ILm. Excellent agreement between the theory and experiment can be seen.

Figure 5.36 is the comparison between the theory and the measurement for the case of the

shear-shear reflection coming from the glass/silicone/glass interface. The comparison between

the measurement (curve 1) and the theoretical results (curve 2) is good. However, the
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predictions are not as accurate here as is the case in figures 5.34, and 5.35. The most likely

cause of this is the presence of the LL2 reflection in the vicinity of the SS1 pulse (see table

5.6). The SS1 reflection cannot be cleanly separated in time from the LL2 reflection and

therefore, after time domain windowing, some of the LL2 reflection still pollutes the SS1

signal, affecting the final results.

Angle of incidence of 20 degrees

At the angle of incidence of 20 degrees, the longitudinal wave is inhomogeneous and cannot

propagate in the glass plate. Therefore, there is only one type of reflection here, the S S1 pulse

and its multiples, which can be received from the embedded silicone layer and compared with

the theoretical model. Table 5.7 shows the angle of refraction and the time of arrival of the

shear-shear reflection pulse from the silicone layer.

Angle of incidence at	 Time of arrival wrt FFTe of reflection	 glass/silicone layer	 (jis)
____________	 (cgrees)	 ____________

LL	 wave inhomogeneous	 N/A

SS1	 shear: 52.5	 2.06

SS2	 shear. 52.5	 4.12

Table 5.7 Angles of refraction and times of arrival of different reflections coming from the silicone layer
between two 5.85 mm thick glass plates. Angle of incidence in water 20.0 degrees.

Figure 5.37 shows the division of the SS1 pulse by the reference signal obtained when the

probes were face-to-face. The angle of the incident wave is 20 degrees from water. Curve

number 1 shows the results of the experiment. The oscillations visible in the low frequency

range, which axe most probably due to a beam spreading effect and a poor signal-to-noise ratio,

were ignored. Curve numbers 2, 3, and 4 are the theoretical predictions for silicone layer

thicknesses of 0.15 p.m. 0.17 pm, and 0.20 p.m. respectively. The infinite plane wave theory

was used to compute these curves. From fig. 5.37 it can be seen that the sensitivity of the

reflection coefficient to the layer thickness is high. Indeed, it is possible to determine the

silicone layer thickness to within a small fraction of a micrometer. Again, the theoretical curve

corresponding to the layer thickness of 0.17 p.m comes very close to the experimental curve,

demonstrating excellent agreement between the theory and the measurements.



Chapter 5	 198
Validation of the theory. Accuracy of the iflection coefficient measurements

5.6 Conclusions

This chapter demonstrated excellent agreement between the measured and predicted reflection

coefficients from a series of model systems.

The accuracy of the measurements depends very much on whether the interface is easily

accessible or not. Measurements of the reflection coefficient from an easily accessible surface

can be carried out with an accuracy better than 2 percent of the reference pulse, usually obtained

at the beginning of the measurement session when the probes are positioned face-to-face.

If it is required to obtain the values of the reflection coefficients from embedded interfaces then

the problem of the measurement accuracy is more complex than in the previous case. In

principle, the same accuracy during the experiments should be expected. However, the problem

of small misalignments of the probes with respect to the measured plate can affect the

amplitudes of the received pulses from within the plate much more than those reflected from the
front face.

Another very important problem regarding the embedded interfaces is that in order to

quantitatively measure the reflection coefficient somewhere within the layered structure, full

knowledge of the part of the system between the embedded interface and the receiver has to be

assumed. For example, in order to determine the thickness of the silicone layer in section 5.5 of
this chapter, the material properties of the top glass plate had to be known. The information

about the thickness and the wave velocities in the glass plate also determined the arrangement of

the probes during the oblique incidence tests. The embedded interface reflectivity measurement

is therefore a classical example of a situation where the quality of the first set measurements

(material properties of the system components) influences the quality of the next set of

experiments (reflection coefficients). The overall error of the measurements therefore may vary,

but for a single parallel plate separating the interface from the water half-space the measurement

error is not bigger than 5 percent

The finite transducer theory used in the investigations of this chapter has been shown to be

capable of predicting the amplitudes of each of the echoes received from multilayered systems.

The error between the experiments and the finite transducer theory predictions is smaller than

10 percent. The finite transducer theory was also able to explain the Rayleigh angle dip

phenomenon which could not be satisfactorily accounted for using an infinite plane wave

model.

It has been shown in this chapter that the infinite plane wave theory can be successfully used to
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predict reflection coefficients from single interfaces measured by finite transducers when two

conditions are satisfied. The first one is that the non-specular reflection phenomenon does not

take place during the measurement, and the second requirement is that the receiving transducer

has to be placed in the middle of the area isonified by the reflected beam which is to be

measured. The measurements of reflection coefficient at the water/aluminium interface

presented at the beginning of this chapter showed that only at two angles of incidence, namely

the longitudinal critical angle and the Rayleigh angle, was it necessary to use the finite

transducer model to achieve excellent agreement with the experiments. The measurements of the

reflection coefficients form the silicone liquid layer between two glass plates, presented at the

end of this chapter, have clearly shown that, when testing at the angles of incidence away from

the critical angles, the infinite plane wave theory can be used with confidence provided that the

receiver is placed at the appropriate spatial position to capture the reflection of interest.

Because of its very modest computing power requirements, the infinite plane wave model is an

excellent tool for fast calculations of the sensitivity of the reflection coefficients to various

changes in the system under investigations. The infinite plane wave theory is also very useful in

the calculations of the time of arrival of various pulses coming from embedded interfaces,

which is extremely helpful information during the experiments.
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Fig. 5.1 (a)The reference measurement.

Fig. 5.1(b) Reflection measurement.
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axis of symmetry
(perpendicular to the interface)

y

left arm	 right arm4

	

transmitter
	 7"

	

specimen
	 receiver

x

Zk
	 pitch of the specimen

	 roll of the specimen

axis of rotation
of the arms

Fig 5.2 Concept behind the design of the reflection coefficient
meter (RCM)
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angle of incidence knob

Fig 5.3 The reflection coefficient meter designed and manufactured
for the purposes of the project
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microcomputer
DELL 310

GPIB

digital oscilloscope
LeCroy 9400

pulser/receiver
Panametrics
5052PRX75

Fig 5.4 Electronic equipment used for experiments.
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Position the transducers
face-to-face

Capture the
reference pulse

Perform FFF on the
reference pulse

Mount the specimen and
align it with respect to

the transducers

Adjust the angle of incidence and
position the receiver to capture

the reflection of interest

Capture the
reflected pulse

Perform FFT on the
reflected pulse

Divide the spectrum of the reflected pulse by
the spectrum of the reference pulse

Reflection coefficient in
the frequency domain

Fig 5.5 Data processing sequence used for the measurement of
the reflection coefficient
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transmitter	 receiver

water/aluminium
interface

mm

Fig 5.7 Schematic diagram of the system used for the measurements
of the water/aluminium reflection coefficient.



0.0	 Frequency (MHz)	 250

1.0

U

I
I

0.0

Chapter 5	 207
Validation of the theory. Accuracy of the reflection coefficient measurements

1.00

U

I

-1.00
0.00	 re (its)	 2.0

Fig. 5.8 The tune domain and the frequency domain representations of the reference
pulse obtained when the transducers were positioned face-to-face. A pair of 10
MHz wideband Rolls-Royce Mateval transducers were used for the experiments.
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1.00

I

-1.00
0.00	 Time 4Ls)	 2.0

1.0

I

0.0
0.0	 Frequency (MHz)	 25.0

Fig. 5.9 The time domain and the frequency domain representations of the reflected
pulse from the front face of the 20 mm thick aluminium block. Angle of
incidence was 20 degrees.A pair of 10 MHz wideband Rolls-Royce Mateval
transducers were used for the experiments.
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Fig 5.20 The concept of the measurements of the reflection coefficient
from the embedded interfaces.
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Fig 5.21 Measurements of reflections from an aluminium plate in water
at the oblique incidence.
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-1.00
0.0	 r	 4is)	 10.0

Fig. 5.25 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture SS1 reflection. Comparison
between the measurements (a), and theory (b).
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0.0	 rinie (jis)	 10.0

Fig. 5.26 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture (LS+SL)1 reflection.
Comparison between the measurements (a), and theory (b).
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Fig. 5.27 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture LL1 reflection. Comparison
between the measurements (a), and theory (b).
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Fig. 5.29 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 20 degrees. The receiver is positioned to capture FF reflection. Comparison
between the measurements (a), and theory (b).
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Fig. 5.30 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 20 degrees. The receiver is positioned to capture SS1 reflection. Comparison
between the measurements (a), and theory (b).
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Fig 5.31 Schematic diagram of the glass/silicone/glass system
used for the experiments.
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CHAPTER 6

Monitoring of interfacial conditions at a glass/epoxy interface
using the reflection coefficient technique

6.1 Introduction

In the previous chapters of this thesis we were concerned with the development and validation of

theoretical and experimental techniques for the monitoring of the interfacial condition in adhesive

joints. The intention of this chapter is to apply all this knowledge to practically monitor changes

in material properties across adherend/adhesive interfaces. The initial study described in this

chapter uses the glass/epoxy system as it is very convenient to make and rather simple to model

theoretically. Two types of specimens are considered here, those with strong and weak adhesion

on the glass/epoxy interface. The specimens with strong adhesion properties were manufactured

by applying liquid epoxy resin onto acetone cleaned glass plates. In the case of joints with

reduced interfacial strength, the adherends were painted with Frekote 44 mould release agent

prior to application of epoxy resin. This the simplest defective interface to produce and the idea

is similar to that of Pilarski et al. (1987).

In section 6.2 experimental work to monitor changes in the normal incidence reflection

coefficient from a glass/epoxy interface while the epoxy is curing, changing its properties from

those of the viscous fluid towards a solid material, is described. The epoxy is applied to glass

plates with and without a very thin layer of mould release agent applied prior to bonding.

In section 6.3 an experimental and the theoretical evaluation of the glass/epoxy interface at

oblique incidence is described. Here, using the infinite plane wave theory, the angles of

incidence to achieve the best sensitivity of the reflection coefficient to the interfacial conditions

between the glass and the epoxy are determined. The reflection coefficient measurement at two

theoretically determined angles is carried out to demonstrate that it is possible to measure small

changes across the glass/epoxy boundary.

Section 6.4 summarises the main findings of this chapter.
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6.2 Changes in the reflection coefficient across the glass/epoxy resin interface

during cure

There are two important problems in the NDT of adhesive joints which we would like to address

in this section. The first of them is whether it is possible to determine the state of cure of the

epoxy resin using the reflection coefficient method, and to what accuracy the measurements have

to be conducted in order to successfully use this technique in practice. The second question is

whether it is possible to detect a weak bond created by the presence of the very thin layer of

mould release agent between the adherend and the adhesive.

Two sets of measurements were conducted to answer these two questions. The first of them was

to monitor the normal incidence shear and longitudinal reflectivity from the boundary between a

clean glass surface and the epoxy resin during the process of curing. The second set of

experiments was conducted using exactly the same setup as the first one, but the glass adherend

was treated with the mould release agent, Frekote 44, prior to bonding.

6.2.1 Measurements

The monitoring of the shear and longitudinal reflection coefficient at the glass epoxy interface

was performed using the experimental setup shown schematically in fig. 6.1. The longitudinal

probe, 10 MHz wideband unfocussed Rolls-Royce Mateval transducer, was placed on the top of

the glass buffer plate and coupled to the structure with the low viscosity machine oil. The shear

probe, 10 MHz wideband Ultran transducer, was pressed into the glass buffer alongside the

longitudinal probe and coupled to the structure by honey. Since the ultrasonic transducers were

coupled to the structure by thin layers of viscoelastic liquids, lack of ccistency in the coupling

could be expected. It was therefore required to create a thin reference interface in the glass

buffer. The glass buffer (see fig. 6.1) consisted of two glass sheets, 4.85 mm thick and 2.0 mm

thick, bonded together by a very thin layer of epoxy. In this way the reference interface, a

glass/thin epoxy layer/glass, was created with respect to which the longitudinal and shear

reflectivity from the monitored glass/epoxy interface could be accurately measured.

Figure 6.2 shows the time domain responses measured by the longitudinal wave probe at

different stages of the experiment. Figure 6.2(a) shows the longitudinal wave response of the

specimen before the epoxy resin was applied. The first reflection shown in the picture is the

reference pulse coming from the reference interface in the glass buffer, while the second

reflection comes from the glass/air interface. Figure 6.2(b) shows the response of the system

just after the liquid epoxy resin (Ciba Geigy Araldite MY 750 resin and HY 931 hardener) had
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made contact with the glass buffer. For such a case the normal incidence longitudinal reflectivity

should drop because the impedance of the epoxy resin is much higher that that of air. From the

figure it can clearly be seen that the first pulse (reference pulse) did not change its amplitude,

while the second one is visibly smaller than that of fig. 6.2(a), confirming our expectations.

Figure 6.2(c) shows the response of the specimen 4.5 hours after the application of the epoxy.

Here the reflection from the glass/epoxy interface is even smaller than that of fig. 6.2(b)

indicating that the impedance of the epoxy increases during the curing process. Figure 6.2(d)

shows the response of the system 17.5 hours after the epoxy resin was applied, and corresponds

to the case of solid epoxy.

The time domain signal shown in fig. 6.2(a) can be used for the calibration purposes as it is

known that the normal incidence reflection coefficient at the glass/air boundary is practically

unity. Therefore, in order to quantitatively determine the reflection coefficients at the glass/epoxy

boundary at the different stages of the experiment, the following simple procedure can be

adopted. Using the time domain response of fig. 6.2(a) the glass/air reflection can be divided by

the reference pulse in the frequency domain giving the reference transfer function. Then all the

other signals obtained during the experiment can be normalised by the reference transfer function

giving the required glass/epoxy reflection coefficient in the frequency domain.

Figure 6.3 shows the results of the normalisation calculations described above. From the figure

it can clearly be seen that the normal incidence longitudinal reflection coefficient from the

glass/epoxy interface is frequency independent throughout the entire time of the experiment.

Figure 6.4 shows the normal incidence shear time domain response from the tested specimen at

different stages of the experiment. In fig. 6.4(a) the time history of the response from the system

is shown before the epoxy resin was poured in. As in the case of longitudinal wave excitation,

the first pulse coming back from the tested specimen is the echo from the reference interface in

the glass buffer (see fig. 6.1). The second echo visible on fig. 6.4(a) is the reflection from the

glass/air boundary. Figure 6.4(b) shows what happens when the liquid epoxy makes contact

with the glass buffer. Here it can be seen that amplitude of the reflection from the glass/epoxy is

somewhat smaller than that of the glass/air case of fig. 6.4(a) indicating that the reflection

coefficient is smaller than unity here. This phenomenon is in accordance with our expectations.

Indeed, liquid epoxy resin has high viscosity and therefore supports shear wave propagation

(see Appendix B). This means that the shear impedance of the liquid epoxy resin is not zero and

the shear reflection coefficient should be less than unity for such cases. Figure 6.4(c) shows the

response from the system 4.5 hours after the epoxy had been poured in. The reflection from the

glass/epoxy boundary is significantly lower than that of figures 6.4(a) and (b), indicating that the

epoxy considerably increased its shear impedance over that time. Figure 6.4(d) shows the result
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of the measurement performed 17.5 hours from the beginning of the experiment. Comparing this

measurement to that of fig. 6.4(c) it can be seen that there is no significant change in the

response from the specimen, indicating that the major changes in the state of the epoxy took

place within the first 4.5 hours of the experiment.

As in the case of the longitudinal excitation, using the signal of fig. 6.4(a) for the calibration

purposes, it is possible to quantitatively determine the shear reflectivity from the glass/epoxy

boundary. Figure 6.5 shows the experimentally obtained normal incidence shear reflection

coefficient for this case. Looking at the RSS curves of fig. 6.5 it can be seen that the shear

reflection coefficient measurements are slightly frequency dependent and the frequency

dependence is more pronounced for the measurements taken in the later stage of the experiment.

This oscillation of the RSS curves is most probably due to unreliable coupling between the shear

transducer and the glass plate which could have changed during the 20 hours long experiment.

The same set of experiments was conducted for the specimen treated with a mould release agent

prior to bonding. Figure 6.1 shows schematically the setup used for the measurements. The

monitored interface in this case was painted twice with Frekote 44 liquid which, after setting,

forms a very thin layer of mould release.

As the thickness of the Frekote layer is very small, the normal incidence shear and longitudinal

reflection coefficient from the glass/Frekote 44/air is practically unity. For both types of bulk

waves, longitudinal and shear, the calibration of the reflections coming from the reference

interface (see fig. 6.1) was conducted by capturing of the reference signal from the glass/Frekote

44/air interface before the epoxy resin was poured. Then, during the experiment, the reflection

coefficient results were obtained quantitatively in exactly the same manner as described at the

beginning of this subsection. The results of the measurements are shown in figures 6.6 and 6.7.

Fig 6.6 shows the normal incidence longitudinal reflection coefficient from the glass/Frekote

44/air interface as epoxy cures.

The normal incidence shear reflection coefficient measurements for the case of the glass/Frekote

44/epoxy interface is shown in fig. 6.7. As in the case of the longitudinal reflection coefficient,

the results are normalised here with respect to the glass/Frekote 44/air shear reflection

coefficient, which was assumed to be unity. From fig. 6.7 ii can clearly be seen that the shear

reflectivity drops as the epoxy cures which indicates that the shear impedance of the epoxy

increases as it changes state from liquid to solid.
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6.2.2 Comparison of results with and without mould release

The results of four experiments described above were plotted in fig. 6.8 for convenient

comparisons.

In fig. 6.8(a) the curve marked 'clean interface' shows the average values of the normal

incidence longitudinal reflection coefficient taken from the curves of fig. 6.3. The figure shows

that the amplitude of the normal incidence longitudinal reflection coefficient changes from about

0.77 for the liquid state of epoxy to about 0.66 when the epoxy resin is solid. This demonstrates

that it is possible to monitor changes in the cure state of the epoxy by longitudinal reflection

coefficient measurements provided that the absolute error of the measurements is of order of a

few percent.

Figure 6.8(b) the curve marked 'clean interface' shows the average values of the normal

incidence shear reflection coefficient in the frequency range of between 6 and 12 MHz as the

epoxy resin cures, taken from the curves of fig. 6.5. The figure shows that the amplitude of the

normal incidence longitudinal reflection coefficient changes from about 0.93 for the liquid state

of epoxy to about 0.71 when the epoxy resin is solid. This demonstrates that it is possible to

monitor changes in the cure state of the epoxy by longitudinal reflection coefficient

measurements provided that the absolute error of the measurements is of order of a few percent.

From figures 6.3 and 6.5 it can be also seen that the sensitivity of the shear normal incidence

reflectivity is higher than that of the longitudinal reflectivity. Indeed, the variation of the

longitudinal reflection coefficient during the experiment is about 15 %, while the variation of the

shear reflectivity is about 24 %.

In fig. 6.8(a) the curve marked '2 coats of Frekote 44' shows the average values of the normal

incidence longitudinal reflection coefficient taken from the curves of fig. 6.6. The figure shows

that the amplitude of the normal incidence longitudinal reflection coefficient changes from about

0.77 for the liquid state of epoxy to about 0.66 when the epoxy resin is solid. Comparing

figures 6.3 and 6.6 as well as two curves of fig. 6.8(a) showing the average values of RLL

coefficients, it can be seen that the curing speed of the epoxy in the previous experiment was

higher than here. Indeed, the 6 h 30 mm curve of fig. 6.3 almost touches the bottom level of the

reflection coefficient range, indicating that 6.5 hours after the application of the epoxy, the

curing process was coming to an end, while the 7 h 30 mm curve of fig. 6.6 is still far from the

bottom line. The higher curing speed of the epoxy in the previous experiment is the result of a

higher ambient temperature in the laboratory at the time when the measurements were conducted,

as the higher the ambient temperature, the faster the epoxy cures. However, after the curing

process is over, the longitudinal reflection coefficient for both cases is very similar, 0.657 for
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the glass/epoxy interface, and 0.662 for the glass/Frekote 44/epoxy system indicating that, in

both experiments, the epoxy attained very similar mechanical properties.

Figure 6.8(b) the curve marked '2 coats of Frekote 44' shows the variation of the shear

reflection coefficient with time. The average values in the frequency range of 6- 12 MHz, taken

from the curves of fig. 6.7, are presented here. The figure shows that the amplitude of the

normal incidence shear reflection coefficient changes from about 0.95 for the liquid state of

epoxy to about 0.80 when the epoxy resin is solid.

Looking at fig 6.8(b) it can clearly be seen that the normal incidence shear reflection coefficient

from the glass/Frekote 44/epoxy system (curve marked '2 coats of Frekote 44') is significantly

higher than that from the glass/epoxy interface without the mould release (curve marked 'clean

interface'), even after the epoxy has been cured. Indeed, from the figure it can be seen that by

the end of the experiment, when the epoxy was solid, the amplitude of RSS coefficient from the

glass/epoxy interface attains the asymptotic value of 0.71. The asymptotic amplitude of the RSS

coefficient from the glass/Frekote 44/epoxy system is 0.80, which is about 12 % higher that that

of glass/epoxy interface without the mould release.

From figure 6.8(a) and (b)it can clearly be seen that the normal incidence longitudinal wave

reflection coefficient technique was incapable of the detection of the presence of the mould

release agent at tie glass/epoxy interface, while using the shear wave probe it was possible to do

so. This results of the experiments indicate that the shear stiffness of the glass/epoxy interface

treated with the mould release prior to bonding was lower than that of the untreated interface.

However, the exact mechanism of the reduction in shear stiffness across the glass/epoxy

interface with the mould release in between is unclear. It might be due to a very low shear

stiffness of the mould release agent layer itself, or perhaps a partial kissing bond (see page 10)

formed between the mould release and the epoxy resin.

As shown above, the normal incidence shear reflection coefficient can be used to detect presence

of Frekote 44 mould release agent between glass and epoxy. However, the shear wave method

suffers a major drawback when it comes to the quantitative reflection coefficient measurements

because of the unreliable coupling between the transducer and the examined specimen.

Differences in shear wave reflectivity of the order of ten percent can only be measured reliably

when the position of the shear transducer is left unchanged for the entire duration of the

experiment, as was the case here. This requirement severely restricts the application of the

normal incidence shear wave technique in an industrial environment.
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6.3 Determination of the presence of the mould release agent between

glass and epoxy half-spaces using the oblique incidence technique.

Problem of detectability.

It was shown in section 6.3 that it is possible to determine the presence of the mould release

agent, Frekote 44, at the glass/epoxy interface using the normal incidence shear wave technique.

This subsection extends the scope of the investigations to oblique angles of incidence. Here the

objective is to find theoretically the angles of incidence for which the reflection coefficient is

most sensitive to the interfacial conditions at the glass/epoxy boundary. Then, the experimental

determination of the reflection coefficients from the glass/epoxy interface and the glass/Frekote

44/epoxy system will be conducted at these chosen angles to verify the capability of the

technique.

Figure 6.9 shows schematically the specimens manufactured for the measurements. The

specimens consist of a 4.0 mm thick layer of epoxy resin poured onto a flat sheet of 5.85 mm

thick float glass and allowed to cure. The surfaces of the glass plates were either cleaned with

acetone prior to bonding or painted three times with Frekote 44 liquid to form a very thin layer of

the mould release on the glass surface before the epoxy resin was applied.

6.3.1 Sensitivity study using the infinite plane wave theory

For the theoretical investigations such an interface can be modelled as two semi-infinite half-

spaces with or without a thin solid interlayer between them. Table 6.1 shows the acoustic

properties of the glass and the epoxy resin as well as the properties of the interlayers used for the

sensitivity studies. The interlayers were assumed to be 10 p.m thick, and their acoustic properties

are based on the properties of the epoxy resin. Since the normal incidence measurements, (see

section 6.2.2) indicated that the interface has reduced stiffness in shear direction, the shear

velocities of the interlayers were reduced from 1100 rn/s for the interlayer 1, to 1000 rn/s for the

interlayer 2, and 800 irVs for the interlayer 3, keeping the longitudinal velocities equal that of the

epoxy resin.

Figure 6.10 shows the angular variation of the longitudinal-longitudinal (RLL) reflection

coefficient from the glass/epoxy interface with and without the 10 p.m thick interlayer in

between. The frequency of the longitudinal incident wave was 10 MHz. Since the longitudinal

properties of the interlayers were kept the same as those of the epoxy resin, the Rjj coefficient

does not show any sensitivity at normal incidence. The best sensitivity of the RLL coefficient

can be seen at the angles of incidence of around 54.2 and 72.4 degrees. Indeed, when there is no

interlayer present at the glass/epoxy boundary, the R11 coefficient is null for these two angles of
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krngitudinal	 longitudinal shear velocityvelocity	 attenUation	 (rn/s)	 attenuation(kg/rn3)	 (mis)	 (nepers)	 _____________	 (nepers)

glass	 2454	 5815	 0.00	 3455	 0.00

epoxy	 1170	 2625	 0.00	 1177	 0.00

interlayer 1	 1170	 2625	 0.00	 1100	 0.00

interlayer2	 1170	 2625	 0.00	 1000	 0.00

interlayer 3	 1170	 2625	 0.00	 800	 0.00

water	 1000	 1495	 0.00	 10	 6.28

Table 6.1 Acoustic properties of materials used for the oblique incidence reflection coefficient calculations.

incidence. Any small change in the properties of the thin interlayer influence the RLL coefficient

at these angles significantly. Table 6.2 shows the amplitudes of the RLL coefficient at the angles

of 54.2 and 72.4 degrees for the four cases of fig. 6.10. As can be seen from table 6.2 the RLL

coefficient is highly sensitive to the interfacial conditions at the angles of incidence of 54.2 and

72.2 degrees. Indeed, when there is no interlayer present, the RLL reflection coefficient is null

and even a small variation in the interfacial properties (see interlayer 1 curve) raises the amplitude

of the reflection coefficient from the zero level. Therefore, the sensitivity of the RLL coefficient

technique at these two angles of incidence is limited primarily by the signal-to-noise ratio of the

equipment used for the experiments.

material	 Rjj, coefficient at	 R11, coefficient at
54.2 degrees	 72.4 degrees

No interlayer

	

0.000	 0.000present

interlayer 1	 0.011	 0.018

inteilayer 2	 0.028	 0.045

interlayer3	 0.071	 0.117

Table 6.2 The amplitude of the Rjj coefficient from the glass/epoxy interface with and without the 10 urn
thick interlayers present in between.
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Figure 6.11 shows the angular variation of the shear-shear reflection coefficient (Rss) from the

boundary between the glass and the epoxy half-spaces separated by 10 p.m thick interlayers of

different shear stiffnesses. The frequency of the incident shear wave is 10 MHz. The curve

numbers in fig. 6.11 correspond to the interlayer numbers in table 6.1. It can be seen from the

figure that the best sensitivity of the RSS coefficient is at normal incidence and at around 28.4

degrees, where the reflection coefficient curve for the glass/epoxy boundary without an

interlayer touches the zero line. At such an angle of incidence very small changes in the reflection

coefficient curve can be detected because they are large in proportion to the reference curve

which attains a null value here. Table 6.3 shows the amplitudes of the RSS coefficient at normal

incidence (0.0 degrees) and at an angle of 28.4 degrees. The absolute changes in the amplitude

of the RSS coefficient is similar at both angles of incidence. However, in terms of the relative

changes in amplitude, the shear-shear reflection coefficient at 28.4 degrees is much more

sensitive to the interfacial changes than at normal incidence. In practice, the sensitivity of the

technique at 28.4 degrees depends on the signal-to-noise ratio of the equipment used.

R coefficient at	 RSS coefficient at
0.0 degrees	 28.4 degrees

No interlayer

	

0.72 1	 0.000present________

interlayer 1	 0.730	 0.011

interlayer2	 0.749	 0.026

interlayez3	 0.814	 0.071

Table 6.3 The amplitude of the RSS coefficient from the glass/epoxy interface with and without the 10 jim
thick interlayers present in between.

Figure 6.12 shows the longitudinal-shear reflection coefficients (RLS) from the glass/epoxy

boundaries with and without 10 p.m thick interlayer. The frequency of the longitudinal incident

wave is 10 MHz, and the material properties of the glass, the epoxy and the interlayers are given

in table 6.1. From the figure it can be seen that the sensitivity of the R reflection coefficient is

rather poor.

Figure 6.13 shows the shear-longitudinal reflection coefficient curves (RJ calculated for the

systems comprising the glass and the epoxy half-spaces separated by 10 p.m thick interlayers,

whose mechanical properties are given in table 6.1. From the plot it can be seen that the

sensitivity of the RSL coefficient to small changes at the interface is rather poor.
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6.3.2 Measurements of the oblique incidence reflectivity from the glass/epoxy

system with and without a Frekote 44 layer

It has been shown in subsection 6.3.1 that, using certain angles of incidence and types of

reflections, it is possible to ultrasonically monitor very small changes across the glass/epoxy

interface. In the theoretical investigations, the shear stiffness of the glass/epoxy interface with

the mould release layer in between was reduced with respect to the shear stiffness of the interface

without the mould release present, while the longitudinal stiffness was kept the same. These

assumptions are in qualitative agreement with the normal incidence longitudinal and shear

reflection coefficient measurements, presented in section 6.2.2.

Two types of glass/epoxy specimens were manufactured for the experiments (see fig. 6.9), the

first one being a simple glass/epoxy joint, and the other one containing a thin Frekote 44 mould

release layer applied on the glass surface prior to the application of the epoxy. The measurements

of the ultrasonic reflectivity from the glass/epoxy interface were conducted at four different

angles of incidence using the reflection coefficients RLL, RSS, and (Rj+RSL) at the angles of

incidence corresponding to the best sensitivity of each of the reflection coefficients. Figure 6.14

shows schematically the oblique incidence technique adopted for the measurements. Here the

longitudinal wave, generated by the transmitter, a 10 MHz wideband Rolls-Royce Mateval

transducer, refracts at the water/glass boundary generating oblique incidence shear and

longitudinal pulses in the glass. The reflected pulses from the glass/epoxy interface mode

convert back into longitudinal waves in water to be captured by the receiver, also a 10 MHz

wideband Rolls-Royce Mateval transducer. For a more detailed description of the experimental

setup, the measurement technique, and the data processing sequence used in the experiment,

refer to section 5.2.

Figure 6.15 shows the measured longitudinal-shear and shear-longitudinal (LS+SL) reflection

coefficient from the glass/epoxy interfaces with and without the Frekote 44 mould release at two

different angles of incidence. The measurements involved spectral division of the pulse of

interest (in this case LS+LS pulse) by the reference pulse captured in face-to-face arrangement of

the probes. The reflection coefficient measurement technique from embedded interfaces was

described in detail in section 5.4.

In fig. 6.15(a) the angle of incidence was set to 11.8 degrees in water which, in glass,

corresponds to an angle of incidence of 52.7 degrees for the longitudinal wave and 28.2 degrees

for the shear wave. From fig. 6.15(a) it can be seen that the LS+SL reflection coefficient is

practically the same for the glass/epoxy interface with the Frekote 44 layer and without it. This

result is in accordance with our expectations. Indeed, the (LS+SL) reflection at the angle of
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incidence of 11.8 degrees is the summation of two different reflection coefficients, the RLS

coefficient at 52.7 degrees (see fig. 6.12), and RSL coefficient at 28.2 degrees (see fig. 6.13). It

can be seen from figures 6.12 and 6.13 that the sensitivity of both reflection coefficients at their

corresponding angles of incidence is rather poor which means that the (LS+SL) reflectivity is not

sensitive enough to be used successfully for the detection of the presence of the Frekote 44 layer

across the glass/epoxy interface.

Figure 6.15(b) shows another example of the (LS+SL) reflectivity measurement, this time at an

angle of incidence of 13.9 degrees from water which corresponds to angles of incidence of 69.1

degrees for the longitudinal wave, and 33.7 degrees for the shear wave in the glass. As the
(LS+SL) reflectivity at 13.9 degrees is the summation of the RLS coefficient at 69.1 degrees

(see fig. 6.12), and RSL coefficient at 33.7 degrees (see fig. 6.13), then the sensitivity of the

measurement to the presence of the mould release should be practically the same as for the angle

of incidence of 11.8 degrees. Again, no significant change between the reflection coefficient

over the glass/epoxy interface with and without the Frekote 44 layer can be seen.

A more interesting result can be obtained when, at the angle of incidence from water of 11.8
degrees, instead of measuring the (LS-4SL)1 reflection, the SS1 pulse is taken for the analysis.

Using Snell's law it can be shown that the shear wave refracts in the glass at the angle of 28.2

degrees which, looking at fig. 6.11, is the angle at which the shear-shear reflection coefficient

becomes most sensitive to the interfacial properties across the glass/epoxy bounlary. Figure

6.16(a) shows the time domain response of the glass/epoxy plate to a 10 MHz wideband pulse

excitation at the angle of incidence of 11.8 degrees from water. The transmitter and receiver were
arranged so that they captured the SS1 reflection primarily. Table 6.4 lists the angles of

refraction and the times of arrival of different pulses reflected from the glass/epoxy interface.

Note that the vertical scales of figures 16(a) and (b) were chosen primarily to show the

amplitudes of the SS1 pulses coming from the glass/epoxy interfaces. Some other pulses of

much bigger amplitudes than those of S type are clipped by the boundaries of the drawings.

Looking at table 6.4 and fig. 6.16(a) it can be seen that the first pulse arriving from the

glass/epoxy boundary is the LL1 reflection, arriving 1.22 .Ls behind the front face reflection

(FF). The (LS+SL)1 pulse arrives together with the LL2 reflection but is not really affected by

it. This is because the receiver effectively misses the area isonified by LL2, as the pulse emerges

from within the glass plate far away from the receiver. The next reflection received by the probe

is the SS1 reflection which is slightly superimposed on the ((LS+SL)1LL)1 pulse arriving 0.34

p.s later. As with the LL2 pulse, the ((LS+SL)1LL)1 reflection is almost entirely missed by the

receiver and therefore appears very small on fig. 6.16(a). The last significant pulse visible on
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Angle of incidence	 Time of arrival Wrt FFType of reflection	 glass/epoxy	
()____ (-_____

longitudinal: 52.7 	 1.22

(LS+SL)1	 longitudinal: 52.7
shear: 28.2	 2.10

LI..2 	longitudinal: 52.7	 2.44

SS1	 shear 28.2	 2.98

((LS+SL)1 LL)1	 longitudinal: 52.7
shear: 28.2	 3.32

LI.3	 longitudinal: 52.7	 3.66

(Ls+SL)2	 longitudinal: 52.7
shear: 28.2	 4.20

Table 6.4 Angles of refraction and times of arrival of different reflections coming from the back of the 5.85 mm
thick glass plate. Angle of incidence in water 11.8 degrees.

fig. 6.16(a) is the (LS+SL)2 reflection, arriving 0.88 .Ls behind the ((LS+SL)1LL)1. From fig.

6.16(a) it can be seen that the amplitude of the S reflection is very small here. This

observation is in accordance with the theoretical predictions of fig. 6.11, which show that the

RSS coefficient is very close to zero at the angles of incidence around 28.4 degrees.

Figure 6.16(b) shows the time domain response from the glass/epoxy plate with the mould

release applied prior to bonding. The excitation and the transducer configuration was exactly the

same here as in the case of fig. 6.16(a). As one can see, the FF, LLj, (LS+SL)j and (LS+SL)2

pulses have almost identical signatures in figures 6.16(a) and (b), which indicates that the

reflection coefficients RLL and RLS at 52.7 degrees as well as RSL at 28.2 degrees are not

sensitive to the presence of the Frekote 44 layer. However, looking at fig. 6.16(b), it can clearly

be seen that the SS1 reflection from the glass/epoxy interface treated with the mould release prior

to bonding is about three times larger than that obtained from the glass/epoxy boundary without

the Frekote 44 layer present and showed in fig. 6.16(a). This finding clearly indicates that the

28.2 degree shear-shear reflection coefficient technique is capable of detection of the mould

release layer between glass and epoxy.

Another very interesting result can obtained at an angle of incidence of 12.0 degrees from water.

Table 6.5 shows the angles of refractions and times of arrivals of different pulses coming from

the glass/epoxy boundary and fig. 6.17(a) shows the time domain response of the glass/epoxy

plate to a 10 MHz wideband pulse excitation. The receiver was positioned so that it primarily
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received the LL1 pulse.

Angle of incidence at	 T ofTe of reflection	 glass/epoxy	
()____________	 (clegiees)	 ____________

longitudinal: 54.0	 1.18

(LS+SL)1	 longitudinal: 54.0
shear 287	 2.08

LL2	 longitudinal: 54.0	 2.36

SS1	 shear 28.7	 2.97

((LS+SL)1 LL)1	 longitudinal: 54.0
shear 287	 3.26

LL3	 longitudinal: 54.0	 3.54

(Ls+sL)2	 longitudinal: 54.0
shear 28.7	 4.16

Table 6.5 Angles of refraction and times of arrival of different reflections coming from the back of the 5.85 mm
thick glass plate. Angle of incidence in water 12.0 degrees.

As the angle of refraction for the longitudinal wave is 54.0 degrees, in order to fully receive the

LL1 pulse, the receiver had to be positioned far away from the area isonified by front face

reflection (see fig. 6.14), which resulted in a severe deterioration of the FF signal, as can be

seen in fig. 6.17(a). The LL1 reflection, which comes first after the front face pulse, is the one

we are interested in. Its amplitude in fig. 6.17(a) is very small as theoretically predicted on fig.

6.10, where at around 54.2 degrees the glass/epoxy RLL coefficient touches the zero line.

Figure 6.17(b) shows the response of the glass/Frekote 44/epoxy plate to the exactly the same

excitation and for the same probe arrangement as in fig. 6.16(a). Here it can be seen that the

longitudinal-longitudinal reflectivity is double that for the case of the glass/epoxy boundary

without the Frekote layer.

6.4 Conclusions

It has been shown in this chapter that it is possible to monitor small interfacial changes across the

glass/epoxy boundary using the ultrasonic reflection coefficient method.

Normal incidence longitudinal reflection coefficient measurements are not capable of the

detection of the presence of a thin mould release layer between glass and epoxy. The normal
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incidence shear reflection coefficient, measured over the glass/epoxy interface treated with

Frekote 44 prior to bonding, increases its amplitude by about 10 percent with respect to the

untreated glass/epoxy interface at a frequency of around 10 MFIz. This finding provides us with

a means of detection of the presence of the mould release agent at the glass/epoxy boundaiy at

least in a laboratory environment.

Theoretical and experimental investigations using the oblique incidence technique showed that

there are certain angles of incidence where the reflection coefficient becomes very sensitive to

small interfacial changes at the glass/epoxy boundary. The angles of increased sensitivity were

identified as those at which the reflection coefficients from good interfaces assume a null value.

The measurements carried out to monitor the longitudinal-longitudinal and shear-shear

reflectivity at the appropriate angles confirmed the theoretical predictions and showed that the

oblique incidence technique can be used to detect the presence of the Frekote 44 layer.
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Fig 6.1 Experimental setup for the normal incidence longitudinal
and shear reflection coefficient measurements from the
glass/epoxy interface.
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Fig 6.8 Variation of the average reflection coefficient amplitudes
in the frequency range 4 - 12 MHz from the glass/epoxy
interfaces with and without the mould release being applied
to the glass prior to the application of the adhesive.
(A) normal incidence longitudinal reflection coefficient,
(B) normal incidence shear reflection coefficient.
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transmitter
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Fig 6.9 The glass/epoxy specimen manufactured for the oblique incidence
experiments. Two types of the specimens were manufactured, with
and without a thin layer of the Frekote 44 mould release applied
on the glass surface prior to bonding.
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transmitter
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wave	 I
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S.

1$ S.S
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Fig 6.14 Method of generation of the oblique incidence longitudinal
and shear waves in glass.

FF is the front face reflection,
SS is the shear-shear reflection from the silicone layer,
LS is the longitudinal-shear reflection from the silicone layer,
SL is the shear-longitudinal reflection from the silicone layer,
LL is the longitudinal-longitudinal reflection from the layer.
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Fig. 6.15 Measured longitudinal-shear and shear-longitudinal combined (LS+SL)
reflectivity from glass/epoxy inteifaces with and without a nu1d release layer.
(a) angle ol'incidence 11.8 degrees from waler, (b) angle of incidence 13.9
degrees from water. Results normalised with respect to face-to-face signal.
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Fig. 6.16 Measured time domain response from glass/epoxy interface to a 10 MHz pulse
excitation at the angle of incidence 11.8 degrees from water, which corresponds
to 28.2 degrees for shear wave and 52.7 degrees for longitudinal wave in glass.
(a) clean glass surface pnor to bonding, (b) glass surface coated with the Frekote
44 mould release agent prior to bonding.
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Fig. 6.17 Measured time domain response from glass/epoxy interface to a 10 MHz pulse
excitation at the angle of incidence 12.0 degrees from water, which corresponds
to 28.7 degrees for shear wave and 52.7 degrees for longitudinal wave in glass.
(a) clean glass surface prior to bonding, (b) glass surface coated with the Frekote
44 mould release agent prior to bonding.
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CHAPTER 7

Sensitivity of the reflection coefficient method for the
determination of the interfacial properties in adhesive joints

7.1 Introduction

In this chapter an analysis of the problem of the determination of the interfacial properties in

adhesive joints using the reflection coefficient technique is attempted. More specifically, the

chapter addresses the question whether it is possible to detect the presence of a thin oxide layer

between aluminium and epoxy half-spaces and whether the method is capable of detection of the

degradation of the interface due to surface contamination before bonding or environmental attack

of the adhesive joint during service.

In section 7.2 the infinite plane wave theory is used to determine the angles of incidence, the

frequency of excitation as well as the type of reflection coefficient which give the best sensitivity

of the oblique incidence method to the interfacial conditions across the aluminium/epoxy

boundary. The interface is modelled here as an isotropic elastic layer having its own thickness,

density and longitudinal and shear wave velocities. Theoretical predictions are then compared with

experiments conducted on aluminium/epoxy joints with SAA and CAA oxides to determine the

degree of agreement between theory and practice.

Section 7.3 summarises the most important points of the chapter.

7.2 Choice of frequency and angles of incidence for the detection of interfacial

properties in adhesive joints

A typical aluminium-aluminium joint used in the aerospace industry consists of two aluminium

sheets bonded together by epoxy resin. Before the epoxy resin is applied to form the adhesive

joint, the aluminium plates undergo surface treatment procedures in order to increase the joint's

resilience to environmental attack (Kinloch 1983). In order to model the mechanical properties of

an aluminium/epoxy interface layer successfully, it is necessary to know its composition and

morphology.
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7.2.1 Description of the aluminium/epoxy joint used in aerospace industry

There are four different surface preparation procedures which are commonly applied to the

aluminium surface prior to bonding (Allen 1989), namely the Forest Products Laboratory (FPL)

etch, Phosphoric Acid Anodising (PAA), Chromic Acid Anodising (CAA), and Sulphuric Acid

Anodising (SAA). The first two treatments, FPL etch and PAA, are used in the USA industry,

while the third one, CAA, is used in the European and British aerospace industries. The Sulphuric

Acid Anodising (SAA) is not commonly used in aerospace applications, but it has been used in

this thesis for comparison purposes in experimental work. Let us briefly describe each of these

surface treatment procedures; a fuller description can be found in Davies (1989).

Forest Products Laboratory (FPL) etch pretreatment

This is the simplest surface pretreatment of all three, and starts with solvent and alkaline

degreasing (see fig. 7.1). After the grease contamination has been removed from the surface, the

aluminium plate is etched for 10 minutes in a water solution of sulphuric acid and sodium

dichromate for 10 minutes at a temperature of 70° C. In this process, the aluminium plate is

stripped of its thin protective layer comprising a mixture of the oxide and other random chemicals

present when the plate was manufactured. The subsequent rinsing of the aluminium plate in

running tap water builds the layer again, but this time it consists of almost pure aluminium oxide.

The oxide layer produced using the FPL etch process is about 0.07 p.m thick. Fig 7.2 shows a

schematic diagram of the FPL etch oxide structure (Davies 1989).

Phosphoric Acid Anodising (PAA)

In the PAA procedure, after the solvent and alkaline degreasing and FPL etching process (see fig.

7.1), the aluminium plate is anodised in a 10 % solution of orthophosphoric acid at a temperature

of 22° C for 20 minutes at 10 Volts, while the oxide layer is formed at the aluminium surface. The

oxide layer obtained after this process is about 0.6 p.m thick (Davies 1989). Fig 7.3 shows a

schematic diagram of the PAA oxide structure.

Chromic Acid Anodising (CAA)

The CAA process initially follows the same path as the previous two, namely the solvent and the

alkaline degreasing (see fig. 7.1). Then, following alkaline etching and chromic acid etching, the

plate is anodised in a 10 % solution of chromic acid at temperature of 40° C for 40 minutes, while

the aluminium oxide is built on the surface of the plate. The voltage is changed several times
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during the process of anodising being raised in two steps from zero to 40 V in the first 10

minutes, then maintained at the 40 V level for 20 minutes and gradually raised up to 50 V over the

next 5 minutes and then maintained unchanged for the last 5 minutes of the anodising. The
thickness of the oxide layer obtained in the CAA process is about 3.5 pm (Davies 1989). Fig 7.4

shows a schematic diagram of the CAA oxide structure.

Sulphuric Acid Anodising (SAA)

The SAA surface treatment initially follows the same process as the FPL etch. After the FPL

etching and rinsing in running tap water the aluminium surface is anodised in 10 % sulphuric acid

solution at a temperature of -5° C for 12 minutes maintaining the electric current density at 4

A/dm2 (Davies 1989). The oxide layer obtained during the anodising is about 12 pm thick. Figure

7.5 shows a schematic diagram of the SAA oxide structure. It is interesting to note here that it is

possible to obtain different thicknesses of SAA oxide by anodising aluminium samples for

different lengths of time. If, for example, the sample is kept in the bath for 50 minutes then the

oxide is about 50 p.m thick.

7.2.2 Theoretical model of the aluminium/epoxy joint

As can be seen from subsection 7.2.1, the aluminium adhesive joint does not simply consist of the

aluminium material directly bonded to the epoxy resin. Since even 'as received' aluminium plate

has a thin oxide layer, a 'barrier' layer is always present regardless of whether the surface is

anodised or not. In other words, the epoxy resin is bonded to the interlayer formed on the

aluminium surface rather than to the aluminium itself. The surface treatments presented in

subsection 7.2.1 make this interlayer thicker and more uniform. It is therefore important to

account for the presence of the oxide layer in our theoretical model.

Figure 7.6(a) shows schematically the aluminium/epoxy interface with the oxide layer in between

formed using CAA process. From fig. 7.4 it clearly can be seen that the structure of the CAA

oxide is very complicated. However, because the layer is very thin, the theoretical model of the

aluminium/epoxy interface used for the reflection coefficient predictions assumes a simplified

model consisting of aluminium and the epoxy half-spaces separated by a 3.5 JLm thick isotropic

layer with mechanical properties similar to those of the oxide structure. The acoustic properties of

the interlayer were calculated using the properties of solid aluminium oxide and the assumed

porosity of the anodised oxide as follows.

Let us denote the density, longitudinal and shear velocities of the solid oxide as p, CL and CS,

respectively. The moduli of the material in the longitudinal and shear directions will be denoted as
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E and 0, respectively. The density, longitudinal and shear velocities of the anodised oxide are

denoted as p, cL* and ce', respectively. The porosity of the anodised oxide will be denoted as

here. The moduli of the porous oxide material in the longitudinal and shear direction are denoted

as E* and G*, respectively. Using the symbols introduced above the density, the moduli in the

longitudinal and shear directions of the porous oxide can be calculated as,

(7.1)

E*=(1)E,	 (7.2)

G*=(l)G.	 (7.3)

Equations (7.2) and (7.3) state that the longitudinal and shear moduli of the oxide layer changes

linearly with porosity. No account has been taken here of the stress distribution around the pores

which can alter the moduli values to some extend.

In an isotropic material like the solid aluminium oxide, the longitudinal and shear velocities are

related to the longitudinal and shear moduli and the density by the following equations,

E = p c,	 (7.4)

0 = p c.	 (7.5)

In the theoretical investigations, it is assumed that the interlayer between aluminium and epoxy is

isotropic, and therefore satisfying similar relationships between the moduli of elasticity and the

wave velocities as the bulk oxide.

*	 E*1/2
CL =(
	 )

*	 0*1/2
cs =(
	 )

Substituting equations (7.1) - (7.5) into equations (7.6) and (7.7), we have,

CL* = CL,

c5* = CS.

Equations (7.1), (7.8), and (7.9) were used to calculate the equivalent acoustic properties of the

porous oxide layer. The equations show that in the theoretical model the longitudinal and shear
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velocities of the oxide layers are independent of the oxide porosity. The only property which

changes its value is the density of the interlayer as given by eqn (7.1). However, due to the very

complicated morphology of oxide layers (see figures 7.2, 7.3, 7.4 and 7.5), equivalent acoustic

properties calculated from equations (7.1), (7.8), and (7.9) should be considered as approximate.

Indeed, the layer has been modelled here as an isotropic material which means that its acoustic

properties, like phase velocities of the longitudinal and shear waves, are not dependent on the

direction of wave propagation, which is not the case in reality. However, because the thickness of

oxide layers are usually very thin in comparison with the wavelength of the ultrasound used in

experiments, and the isotropic layer model is relatively simple and readily available, the decision

was made to use it here as an approximation.

Table 7.1 shows the assumed acoustic properties of the solid aluminium oxide and the acoustic

properties of the interlayer representing porous oxides obtained using equations (7.1), (7.8), and

(7.9).

density	 longitudinal velocity 	 shear velocity
p(kglm)	 CL S	 CS S

aluminium oxide	 3900	 10200	 6500

10%porousoxide	 3510	 10200	 6500

20 % porous oxide	 3120	 10200	 6500

30 % porous oxide	 2730	 10200	 6500

40 % porous oxide 	 2340	 10200	 6500

50 % porous oxide	 1950	 10200	 6500

60 % porous oxide	 1560	 10200	 6500

70%porous oxide	 1170	 10200	 6500

Table 7.1 Acoustic properties of porous aluminium oxides calculated from equations (7.1), (7.8) and (7.9).

The acoustic properties of the aluminium and epoxy half-spaces used for the reflection coefficient

calculations are given in table 7.2.
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density	 longitudinal velocity	 shear velocity

	

p (kg/rn3)	 CL (mis)	 CS (mis)

aluminium	 2820	 6330	 3120

epoxy	 1170	 2610	 1100

Table 7.2 Acoustic properties of aluminium and epoxy resin used for the reflection coefficient calculations.

7.2.3 Normal incidence longitudinal reflection coefficient from aluminium!

epoxy joints

Figure 7.7 shows a parametric study of the normal incidence longitudlinal reflection coefficient at

the aluminium/oxide/epoxy interface calculated using the properties given in tables 7.1 and 7.2.

The oxide layer was assumed to be 50 tm thick, which is one order of magnitude thicker than that

obtained using the CAA treatment employed in the British and European aerospace industries.

From fig. 7.7 it can be seen that if the porosity of the oxide is small (10 % - 20 %) then the

longitudinal normal incidence reflection coefficient from the oxide layer is greater than the

reflection coefficient from the aluminium/epoxy interface without the oxide layer present, and the

curve is bending in the upward direction for low frequencies. For oxide porosity between 50 %

and 60 % the longitudinal normal incidence curve is very close to that of the reflection coefficient

from the aluminium/epoxy without any oxide layer at all, making the presence of the oxide layer

impossible to detect regardless of the oxide thickness or the frequency range used. When the

porosity of the oxide is big (60 % - 70 %) then the reflection coefficient curve is bending

downwards for low frequencies. It has been discovered empirically (Sullivan and Wood 1970,

Arrowsmith et al 1985, Xu et al 1985, Arrowsmith and Moth 1986) that the porosity of anodised

oxides depend on the electrolyte type, its concentration and temperature. More extensive

theoretical analysis of the normal reflection coefficient from thin oxide layers is given in chapter 4

of this thesis.

The experimental investigation of the normal incidence longitudinal reflectivity was carried out

using single-interface aluminium-epoxy joints with a 50 inn thick SAA oxide layer anodised on

the aluminium surface prior to bonding (see fig. 7.8). Three types of samples were prepared,

'healthy' SAA oxide joints, 'hydrated' SAA oxide joints and the reference joints. The 'hydrated'

type of oxide layer was obtained by keeping the anodised aluminium plates for 48 hours in a water
bath at 550 C, while the 'healthy' samples were kept in dry air for this period of time. The
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reference samples were manufactured by cleaning the aluminium surfaces with acetone. Then all

the samples, the 'hydrated' and the 'healthy' SAA samples as well as the reference ones, were

bonded at the same time and using the same adhesive system (Ciba-Geigy Araldite AY 103 with

Hardener HY 951).

The procedure of the reflection coefficient measurement involving the time domain gating and

spectral division by a reference signal has been described in detail in chapter 5 of this thesis.

Figure 7.9 shows the normal incidence reflection coefficient from the healthy and hydrated 50 p.m

thick SAA oxide normalised with respect to the reflection coefficient from the sample without the

oxide layer present (the reference sample). From the figure it can clearly be seen that it is relatively

easy to detect presence of 50 pm thick oxide layer between aluminium and epoxy. The reflection

coefficient from the healthy oxide bends downwards indicating that the porosity of the layer is

greater than 60 %. The reflection coefficient from the hydrated 50 p.m thick oxide layer moved in

the upward direction with respect to the healthy oxide indicating that the longitudinal impedance of

the layer is higher than that of the healthy layer. More detailed discussion about the behaviour of

the normal incidence reflection coefficient from the interlayer as a function of its impedance is

presented in section 4.4 of this thesis.

Figure 7.10 shows the theoretically calculated normal incidence longitudinal reflection coefficient

from a 50 p.m thick 67 % porous oxide layer and table 7.3 shows the material properties of the

oxides taken for the reflection coefficient calculations. The acoustic properties for the hydrated 67

% porous layer were calculated assuming that after 48 hours in water bath the pores in the oxide

were filled with water, and applying similar reasoning to that given by equations (7.1) - (7.9).

density	 longitudinal velocity	 shear velocity

p (kgm 3)	 cL(m/s)	 CS (mis)

67 % porous
healthy oxide	 1287	 10200	 6500

67 porous
hydrated oxide	 1957	 8510	 5400

Table 7.3 Acoustic properties of healthy and hydrated aluminium oxides assumed in calculations shown in fig.
7.10.

Comparison between figures 7.9 and 7.10 indicates that at normal incidence the theoretical model

is capable of quantitative predictions of the reflection coefficient from the oxides. This will need to

be verified by measuring the levels of porosity, probably by sectioning the samples and using

optical microscopy. Further tests with different levels of porosity will also be required.
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The experimental and theoretical results shown in figures 7.7, 7.9 and 7.10 considered an oxide

layer of the thickness of 50 p.m. which is one order of magnitude higher than the CAA anodised

oxide whose typical thickness is about 3.5 p.m. Figure 7.11 shows the normal incidence

longitudinal reflection coefficients calculated for 70 % porous oxide layers of different

thicknesses. From the figure one can see that while the presence 50 p.m thick oxide is rather easy

to detect, the 20 p.m thick oxide of the same properties is very unlikely to be detected in practice

using frequencies up to 50 MHz. ii it is assumed that in the frequency range up to 50 MHz the

presence of the 30 p.m thick oxide is detectable then the presence of a 3.5 p.m thick oxide of the

same properties will require frequencies up to 500 MHz to secure successful detection of the

presence of the oxide. This requirement cannot practically be met in ultrasonic nondestructive

testing which uses frequencies up to 100 MHz. It is therefore concluded here that at normal

incidence the detection of the presence of 3.5 p.m thick CAA oxide layer, let alone its hydration, is

impossible.

In order to illustrate this, the normal incidence longitudinal wave reflection coefficient was

measured from aluminium/epoxy boundaries with 15 p.m thick SAA oxide, 3.5 p.m thick CAA

oxide and 0.07 p.m thick FPL etch oxide layers created on the surface of the aluminium plates

prior to the application of epoxy resin. The thickness of the SAA oxide was checked with an

electromagnetic gauge, while the thicknesses of the CAA and the FPL etch oxides were taken from

the surface pretreatment specifications (see fig. 7.1). The specimens manufactured for the

experiments were the single-interface type (see fig. 7.8) and the signal processing sequence was

exactly the same as that used to obtain results of fig. 7.9, and involved the time domain gating of

pulses reflected from interfaces of interest and spectral division of the data by the reference signal.

Figure 7.12 shows the normal incidence longitudinal reflection coefficient from the aluminium!

epoxy interfaces with 15 p.m thick 'healthy' SAA oxide and 3.5 p.m thick 'healthy' oxide layers

normalised with respect to the normal incidence longitudinal reflection coefficient from the

specimen with the 0.07 p.m thick FPL etch oxide layer. The results presented in the figure show

that the reflection coefficients from the three interfaces cannot be distinguished from each other.

This is in agreement with the theoretical predictions shown in fig. 7.11.

7.2.4 Oblique incidence reflection coefficients from aluminium/epoxy joints

Figure 7.13 shows the theoretically calculated longitudinal-longitudinal (RLL), shear-shear

(Rss), longitudinal-shear (Rj) and shear longitudinal (RSL) reflection coefficients from an

aluminium-epoxy interface with and without oxide layer as a function of the angle of incidence

in the aluminium half-space. Curves number 1 in fig. 7.13 correspond to the case of a 3.5 p.m
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thick 60 % porous oxide excited at the frequency of 30 MHz. Curves number 2 correspond to

the same case as those bearing number 1 but being excited at a frequency of 10 MHz. Curves

number 3 correspond to the case of an aluminium/epoxy boundary without the oxide layer

present, the reflection coefficients being frequency independent in this case.

There are three important observations which can be drawn from fig. 7.13. The first one is that

the sensitivity of the reflection coefficient method is frequency dependent. Indeed, it can clearly

be seen that the reflection coefficient method is more sensitive at the frequency of 30 MHz

(curves number 1) in comparison with the results obtained at the frequency of 10 MHz (curves

number 2). However, since none of the curves shown in fig. 7.13 touches the zero line, the

sensitivity of the reflection coefficient method will be significantly lower for the

aluminium/epoxy interface than for the glass/epoxy interface studied in chapter 6. Indeed, it

was shown in chapter 6 that at the angles of incidence where the reflection coefficients form the

glass/epoxy interface are zero (see figures 6.10 and 6.11 and compare them with figures

7.13(a) and (c)), the sensitivity of the reflection coefficient method substantially increases. The

third observation is that the biggest sensitivity of the reflection coefficient method is when the
shear-shear reflection coefficient (RSS) at an angle of incidence of around 32.0 degrees in

aluminium is used (see fig. 7.13(c)). Table 7.4 shows the amplitude of the shear-shear
reflection coefficient (Rss) obtained from the curves of fig. 7.13(c).

	

curve number description of the interface	 frequency of RSS amplitude change wit

	

excitation	 at 32.0 deg	 curve No 3

1	
3.5 un thick

	

60%oxidefromtablel.1	 30MHz	 0.574	 52%

2	
3.5im thick

	

60%oxidefromtable7.1 	 10MHZ	 0.458	 21%

-y
3	 No oxide present	 0.374	 0 %

Table 7.4 The amplitude of the RSS coefficient at 32.0 degrees taken from fig. 7.13(c)

There is also a very important practical consideration in favour of the use of the shear wave at this

angle. When the shear wave is incident on the boundary, reflected longitudinal and shear wave

will be generated. However, when the incident shear wave angle is greater than 29.5 degrees, the

longitudinal wave is inhomogeneous so only the shear wave is seen. Indeed, taking the

longitudinal and shear phase velocity values for aluminium from table 7.2 the maximum shear

wave angle for which the longitudinal wave is homogeneous can be calculated as sin'(cS/cL) =

sin(3l20/6330) = 29.5 degrees. Above this angle the longitudinal wave becomes
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inhomogeneous. This means that the only propagating pulses in the aluminium are the shear wave

pulses which greatly simplifies the process of capturing them and data processing. Let us

investigate the sensitivity of the RSS reflectivity at the angle of 32.0 degrees in aluminium.

As we mentioned before, during the process of CAA anodising, an approximately 3.5 p.tm thick

aluminium oxide layer is produced on the surface of the adherend. Due to the nature of the

anodising process, it is sensible to assume that the thickness of the oxide may vary ± 0.5 $Lm over

the tested sample. This means that, in practice, the lower and the upper bounds for the oxide layer

thickness are 3.0 .tm and 4.0 1m, respectively. Therefore, to be useful in practice, the reflection

coefficient variations due to the fluctuations in the layer thickness have to be well separated from

the changes in the reflectivity caused by the absence of the interlayer or by changes of its

properties.

Figure 7.14 shows a parametric study of the shear-shear reflection coefficient at an angle of

incidence of 32.0 degrees in the frequency domain. The horizontal line corresponds to the case

when the oxide layer does no exist at the interface, or in other words, when its thickness is null.

The remaining three curves on this figure correspond to oxide layer thicknesses of 3.0 pm, 3.5

pm, and 4.0 pm with 60 % porosity. The area of the fluctuation of the reflection coefficient due to

the variation of the oxide thickness is contained between the lines corresponding to the 3.0 p.m and

4.0 pm thick oxides, and is shaded.

It is easy now to find the frequencies at which the detection of the presence of the oxide layer is

possible. For example if we require a 20 percent difference in the reflectivity between the interface

with and without the oxide, then the frequency for which the shaded zone is above the 0.37 x

1.2 = 0.45 level can be found from the fig. 7.14 as 10.6 MHz.

The theoretical investigations shown in figures 7.13 and 7.14 were carried out assuming the oxide

porosity of 60 %. It is most likely that 3.5 p.m thick CAA oxide will have porosity between 10 %

and 20 %. Figure 7.15 shows a parametric study of the shear-shear reflection coefficient from

aluminiuml3.5 p.m thick oxide/epoxy interfaces at an angle of incidence of 32.0 degrees in

aluminium for different porosities of the oxide layer. It can clearly be seen from the figure that the

smaller the porosity of the oxide the better the chances of the detection of the oxide layer. Looking

at figures 7.15 and 7.14 we can therefore conclude that the detection of the presence of 3.5 p.m

thick oxide layer between the aluminium and epoxy half-spaces should pose no problems if the

shear-shear reflection coefficient at the angle of 32.0 degrees is used.

Experimental investigations were carried out to validate the theoretical predictions of figures 7.14
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and 7.15 on the three types of aluminium-epoxy joints, which were used for the normal incidence

longitudinal reflection coefficient measurements of fig. 7.12. The first type of specimens were

aluminium/0.07 p.m thick FPL etch oxide/epoxy joints, the second type were aluminium/3.5 p.m

thick CAA oxide/epoxy joints, while the third type of specimens were aluminium/15 p.m thick

SAA oxide/epoxy joints. Figure 7.16 shows the shear-shear reflection coefficients from the CAA

oxide and SAA oxide layers at an angle of 32.0 degrees normalised with respect to the reflection

coefficient from the FPL etched oxide interface. Since the FPL oxide thickness is 0.07 p.m. the

reflection coefficient from the aluminium/FPL etch oxide/epoxy is practically the same as the

aluminium!epoxy coefficient without the oxide layer present.

Comparing the experimental results presented in figures 7.12 and 7.16, a significant improvement

of sensitivity of the oblique incidence technique over the normal incidence method can be seen.

Indeed, it was impossible to detect the presence of the 15 p.m thick SAA oxide using the normal

incidence longitudinal wave technique operating in the frequency range up to 50 MHz (see fig.

7.12), while the shear-shear reflection coefficient at 32.0 degrees readily revealed the presence of

the oxide layer in the frequency range up to 15 MHz (see fig. 7.16). Also the reflection coefficient

from 3.5 p.m thick CAA oxide appears to be slightly higher than that from 0.07 p.m thick FPL etch

oxide and the difference between them increases with frequency. This is qualitatively in agreement

with the theoretical predictions shown in fig. 7.13.

However, according to the theoretical predictions shown in fig. 7.15 we should expect significant

differences in amplitude (at least 30 %) between the CAA and FPL curves of fig. 7.16. This is not

the case here. The shear-shear reflection coefficients from the 3.5 p.m thick CAA oxide and 0.07

p.m thick FPL etch oxide look practically the same in the frequency range between 5 MHz and 15

MHz. This indicates that the theoretical model used for the oblique incidence reflection coefficient

calculations is incapable of accurate quantitative predictions of the behaviour of the real aluminium!

oxide/epoxy systems. The problem here lies in the oversimplification of the mechanical behaviour

of the oxide which was modelled as an isotropic layer rather than an anisotropic honeycomb-like

structure (see figures 7.4 and 7.6).

The curves of fig. 7.15 were obtained assuming that the longitudinal and shear velocities in the

oxide layer are as high as 10200 m/s and 6500 rn/s and that they are independent of the direction

of propagation in the oxide (isotropic model). This assumption also means that the moduli of

elasticity of the layer are direction independent. The schematic diagrams of the PAA oxide (fig

7.3), CAA oxide (fig 7.4) and SAA oxide (fig 7.5) show that all three types of anodised oxides

have a vertical cellular structure suggesting that the oxides have the highest stiffness in the vertical

direction and the lowest stiffness in the horizontal direction. It is therefore very possible that,
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when testing at oblique incidence, the equivalent wave velocities are significantly lower than

calculated in table 7.1.

Figure 7.17 shows the theoretically calculated shear-shear reflection coefficient at an angle of

incidence of 32.0 degrees in aluminium from 60 % porous oxide layers in between aluminium and

epoxy half-spaces, when the longitudinal and shear velocities have been reduced to 60 % of the

values of table 7.1. Table 7.5 shows the acoustic properties used for the calculations.

	

density	 longitudinal velocity 	 shear velocity

	

p (kg/zn3)	 CL (mis)	 CS (m/s)

oxide	 1560	 6210	 3900

Table 7.5 Acoustic properties of aluminium oxide used for the reflection coefficient calculations shown in fig.
7.17.

The theoretically obtained curves of fig. 7.17 are much closer to the experimentally determined

reflection coefficients presented in fig. 7.16 than those of fig. 7.14. However, the acoustic

properties of the oxide material shown in table 7.5 were deliberately chosen so that figures 7.16

and 7.17 are in a reasonably good agreement. The example shown in fig. 7.17 has been solely

devised to show the need for the development of an anisotropic model of the aluminium oxide

interface, in which the directionality of the material properties of the layer can be taken into

account.

7.3 Conclusions

It has been shown in this chapter that the normal incidence reflection coefficient technique

operating up to a frequency of 100 MHz is capable of the detection of the presence of an oxide

layer in adhesive joints provided that the oxide layer is at least 30 1m thick and its effective

porosity is not between 50 % and 60 %. Detection of the 3.5 p.m thick CAA oxide is not possible

using this technique because the oxide is one order of magnitude thinner than the minimum

detectable thickness.

A theoretical analysis of the oblique incidence reflection coefficient from the

aluminium/oxide/epoxy systems shows that at certain angles of incidence and for certain types of

reflection coefficients the sensitivity of the method is much greater than at normal incidence. In

order to show this in practice, the normal incidence longitudinal reflection coefficient and the 32.0
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degrees incidence shear-shear reflection coefficient from 15 p.m thick SAA oxide layer at an

aluminium/epoxy boundary was experimentally determined. A significant improvement of the

oblique incidence method over the conventional nonnal incidence technique could be seen and the

measurements were in qualitative agreement with theory.

The theoretical study of the oblique incidence reflection coefficient from the aluminium/epoxy

interface shows that the sensitivity of the technique to the interfacial changes is not as good as in

the case of the glass/epoxy system, analysed in chapter 6. This is because there are certain angles

of incidence where the oblique angle reflection coefficients from the glass/epoxy interface attain

null values. At these particular angles, the reflection coefficient method substantially increases its

sensitivity. The oblique incidence reflection coefficients from the aluminium/epoxy interface,

however, do not attain any zero value within the entire permissible range of angles of incidence.

The theoretical predictions indicated that, if the shear-shear reflection coefficient at an angle of
incidence 32.0 degrees is used, then it should be possible to detect the presence of a 3.5 p.m thick

CAA oxide layer in the adhesive joint using a frequency as low as 10 MHz. However, the

experiments carried out to monitor the shear-shear reflectivity from CAA oxides in adhesive joints

at an angle of incidence of 32.0 degrees in the frequency range from 5 to 15 MHz showed only

very small sensitivity to the presence of 3.5 p.m thick CAA oxide layers. It has therefore been

concluded that the isotropic model of the oxide layer is too simplistic to quantitatively predict the

mechanical response of the layer when excited by an oblique incident wave.

In order to quantitatively predict the oblique incidence reflection coefficient from complicated

systems like oxides it will be necessary to take into account their strongly anisotropic properties.

The mechanical properties of oxide layers depend on porosity, morphology and composition of

the layers and these are affected by the type of anodising process used as well as the concentration

and temperature of the electrolyte used. It is therefore expected that there will be significant

dependence of the mechanical properties on the thickness of the oxide layers. Further work is

therefore needed to incorporate an anisotropic layer model into the existing theory, to find

appropriate material constants and to validate the model on aluminium/oxide/epoxy systems.

The preliminary experimental study performed here indicates that it will be very difficult to see the

presence of a 3.5 p.m thick CAA oxide layer in the adhesive joint, let alone the detection of

degraded properties of the layer due to, for example, hydration. However, this conclusion may

change if, for example, the anisotropic model suggests other test angles or types of reflection
coefficient.
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Aluminium bonding
USA specification

I solvent degrease I

diy: warm air, 30 mm

alkaline degrease

Aluminium bonding
European specification

solvent degrease I

dry: warm air, 30 mm

alkaline degrease

rinse: 1. tap water, 5 mm 	 rinse: 1. tap water, 5 mm
2. deionised water, 3 mm	 2. deiomsed water, 3 mm

____ I
FPLetch(BAC5514) * II FPLetch(BAC5514) * 1	 I alkalineetch

rinse (as above)
	

rinse (as above)
	 rinse (as above)

dry (as above)
	

PAA (BAC 5555) **	 chromic acid etch process

apply primer
	 rinse (as above)

	
CAA (DEF. STAN. 03-24/1) ***

dry (as above)
	

rinse (as above)

apply primer
	

dry (as above)

apply primer

Fig. 7.1 Genera] cornpanson between European and American surface preuiatments
(after Davies 1989).

* Chromic acid etch to BAC 5514, Boeing Aircraft Specification 5514.
• Phosphoric acid anodising to BAC 5555, Boeing Aircraft Specification 5555.

Chromic acid anodising to UK Defence Standard 03-24/1.
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oxide	 l3Onm

Fig 7.2 Schematic of FPL oxide (after Davies 1989).
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0.6 tm thick oxide

90 run
1<	 >1

3Onm
I	 <	 )'	 I

Fig 7.3 Schematic of PAA oxide (after Davies 1989).
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TOP PART OF OXIDE
small pore size

and a regular structure

Fig 7.4 Schematic of CAA oxide (after Davies 1989)
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40 rim thick 'crust'

-I

	

U U

	

I

-\ :<
35 rim

I	 I
I	 I5nm	 II	 I

'	 >:	 I

Fig 7.5 Schematic of SAA oxide (after Davies 1989).
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:• epoxy

3.5 m
thick oxide

Fig 7.6 Theoretical model used for the reflection coefficient calculations.
(a) Structure of the aluminium/epoxy interface,
(b) Theoretical model of the interface incorporating an isotropic

interlayer between the aluminium and epoxy half-spaces
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transmitter/receiver

\.;

water

aluminium

water

4.5 mm

7 mm

aluminium/epoxy
interface

Fig 7.8 Normal incidence longitudinal wave reflection coefficient
measurements from the aluminium/epoxy boundary.
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CHAPTER 8

Conclusions and suggestions for further work

8.1 General

The application of adhesive joints in industry has been limited by the lack of reliable

nondestructive testing procedures for assessing the integrity of joints.

Substantial research effort has been put towards the development of such testing techniques,

and methods have been devised to test for disbonds and porosity. The problem of poor

cohesion has been addressed recently by many authors and some progress has been noted in

this field. Dewen (1992) showed that it is possible to determine the longitudinal bulk wave

velocity in a bond line to within 6 % of its nominal value and the bond line thickness to within a

micron.

There is no currently available technique for testing the interfacial properties between the

adhesive and adherend. The problem here lies in the thickness of the interfacial layer which is

usually smaller than 5 microns. This excludes all standard ultrasonic testing techniques.

It was suggested by Pilarski and Rose (1988) that oblique incidence methods might be

employed in order to improve the sensitivity of the reflection coefficient technique. The

technique uses two ultrasonic transducers inclined at an angle with respect to the tested joint and

operating in a pitch-catch mode. This thesis has reported the investigations carried out to assess

the viability of this idea for the nondestructive testing of adhesive joints, and in particular, for

characterisation of the adherend/adhesive interface.

The oblique incidence technique has been shown to be far more complicated, both from the

theoretical and experimental point of view, than the standard normal incidence method. When a

specimen is excited at normal incidence, the theory required to explain the observed phenomena

is essentially a one-dimensional model involving propagation of a single wave type (shear or

longitudinal). However, at an oblique angle of incidence the complication of the model

increases substantially. The theory of the response of the structure is now two-dimensional,

involving concurrent shear and longitudinal bulk wave propagation, and embracing problems of
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surface wave, interface wave, and plate wave excitation and propagation. The theory of wave

propagation, transmission and reflection from multilayered viscoelastic plates has been

developed and implemented in a package of computer programs for the prediction of the

response of multilayered viscoelastic plates to finite transducer excitation.

Also, from the experimental point of view, the oblique incidence method requires substantially

more sophisticated experimental procedures than the standard normal incidence technique. It

was therefore necessary to design and build a very accurate mechanism (Reflection Coefficient

Meter) to carry out the tests.

The conclusions reported below can be divided into those associated with the development of

theory and those arising from experimental work.

8.2 Theoretical model for predictions of reflection coefficients from adhesive

joints

Numerical instability of Thomson-Haskell formulation

An adhesive joint has been modelled in this project as a multilayered viscoelastic plate and

initially the Thomson-Haskell wave coupling algorithm was used for computation of the

reflection coefficients from the plates. However, it has been shown in this thesis that in cases

when inhomogeneous waves are generated in plates and the frequency of excitation is high,

then the wave coupling algorithm becomes unstable. It has been shown in this thesis that the

global matrix technique avoids the instability problem, and therefore has been adopted for the

purposes of this project.

Infinite model versus finite model

When the reflection coefficients are to be measured from a single interface then the infinite

model can be used successfully provided that the angle of incidence is away from the critical

angles and the receiver is located in the middle of the area isonified by the reflected beam.

However, at angles of incidence close to the critical angles of the interface, the finite transducer

theory should be used in order to obtain quantitative agreement with experiments.

Initial tests performed on a single interface water/aluminium system revealed that the infinite

plane wave model cannot fully describe the Rayleigh angle phenomenon at which the surface

wave in the aluminium was excited. It was therefore required to develop the theoretical model
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further to include the finite transducer excitation of the multilayered plate and the finite

transducer reception of the ultrasonic field reflected from the tested structure.

When measuring the response from multilayered systems, for example a plate, due to multiple

reflections within the plate, the energy is carried along the plate and the receiver misses a

significant part of the reflected signal. In such circumstances it is necessary to use the finite

transducer model to obtain quantitative agreement between theory and measurements. This has

been demonstrated in chapter 5 of this thesis where the measured response from an aluminium

plate in water was compared with theoretical predictions using the infinite plane wave theory

and the finite transducer theory.

However, if it is required to measure the reflection coefficient from embedded interfaces then

the infinite theory can be successfully applied provided that the beam generated by the

transmitter does not excite any surface or interface waves on its path from the transmitter down

to the monitored interface and back, from the measured interface to the receiver. In other

words, the infmite theory is a sufficient approximation of the finite beam theory when there is

only a specular reflection and transmission of the beam in the measured system. The second

requirement is that the receiver has to be placed in the centre of the area isonified by the

reflection of interest coming from the embedded interface. This has been demonstrated using a

glass/silicone fluid/glass system where a simple plane wave theory was used to quantitatively

predict the reflection coefficient from an embedded interface. The measured reflection

coefficient amplitudes have been found to be within 5 % of the predicted values. If non-

specular reflection or transmission takes place during the experiment, then the finite beam

theory is required to quantitatively predict the measured response.

Modelling of the interfacial layers in aluminium/epoxy joints

In aerospace applications aluminium adherends undergo well defined surface treatment

procedures prior to bonding in order to form porous oxide layers on those surfaces. Epoxy

resin, therefore, bonds to the porous aluminium oxide rather than to the aluminium adherend

itself. In this way the oxide layer becomes an interface layer between the aluminium and epoxy.

This interface layer has very complicated morphology, usually a cellular, irregular structure

with 'columnar-like' topography and the thickness of the layer is of the order of 1 micron or

less depending on the specific surface preparation procedure.

Because of its small thickness, the interface layer in theoretical investigations is frequently

approximated by a spring model. It has been shown in this thesis that the spring model can only

be used in specific circumstances and, in general, it is prone to produce erroneous results. A
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better thin layer approximation, the mass+spring model, has been proposed in this thesis. This

has been shown to approximate the behaviour of thin layers at low frequencies very

satisfactorily.

It has also been shown in this thesis that the spring model or even the mass+spring model

becomes a poor approximation when the layer is excited at oblique incidence. Therefore, a thin

isotropic layer has been used in this project to model the behaviour of the interface layer

between the adherend and the adhesive.

8.3 Monitoring of the interfacial properties between adherend and adhesive

using the reflection coefficient technique

Degree of agreement between the theory and measurement

It has been shown in this thesis that it is possible to achieve agreement between the

measurement of the oblique incidence reflection coefficient from embedded interfaces and

theoretical predictions to within 5 %. This has been demonstrated in chapter 5 where the normal

incidence and the oblique incidence reflection coefficients from a thin silicone layer between

two glass substrates were measured and compared with the infinite plane wave theory.

Monitoring of interfacial properties in glass/epoxy joints

It has been demonstrated in this thesis that it is possible to detect the presence of a thin layer of

mould release (Frekote 44) between glass and epoxy using the normal incidence shear reflection

coefficient technique, while it was impossible to detect the Frekote layer using the normal

incidence longitudinal reflection coefficient method.

It has also been demonstrated here that the oblique incidence method can be very sensitive to the

interfacial properties at the glass/epoxy boundary. It has been shown both theoretically and

experimentally that the sensitivity of the method is greatly enhanced at the angles of incidence

where the reflection coefficients from a good interface are zero.

Monitoring of interfacial properties in aluminium/epoxy joints

It has been shown that the normal incidence longitudinal reflection coefficient operating in the

frequency range up to 100 MHz cannot be used successfully to detect the presence of oxide

layers whose thicknesses are of the order of 1 micron in aluminium/epoxy joints. In order to



Chapter 8	 304

Conclusions and suggestions for further work

secure positive detection of such thin oxide layers, the frequency of excitation would have to be

as high as 1 0Hz. This requirement cannot be satisfied in practical NDT applications.

Theoretical investigations have shown that the oblique incidence reflection coefficients from the

aluminium/ epoxy interfaces have no zeroes over the entire possible range of angles of

incidence. This finding makes the technique devised to monitor the glass/epoxy interface

inapplicable to the case of the aluminium/epoxy interface. Therefore the sensitivity of the

reflection coefficient method to interfacial changes across the aluminium/epoxy boundary is

expected to be significantly lower than in the case of the glass/epoxy system.

The experimental and theoretical investigations showed that the theoretical predictions of the

oblique incidence reflection coefficients from aluminium/oxide layer/epoxy interfaces are not in

good quantitative agreement with the measurements. The most probable reason for this

discrepancy is the oversimplification of the mechanical behaviour of the oxide layer. The model

which has been used for the predictions assumed that the oxide layer can be approximated to a

thin isotropic layer. However, the results obtained suggest that an anisotropic model should be

used in order to achieve quantitative agreement between theory and experiments.

8.4 Detectability of presence of oxide layers in aluminium/epoxy joints using

reflection coefficient technique

Theoretical and experimental work has been carried out to find the optimal arrangement of the

probes, frequency range and type of reflection in order to achieve maximum sensitivity to

changes in the adherend/adhesive interfaces. It has been found that the oblique incidence

techniques can offer a substantial increase in sensitivity to interfacial properties over the current

standard inspection techniques, but the results obtained indicate that the improvement is

unlikely to be sufficient for the technique to be used as a new reliable nondestructive procedure.

There is a small chance that the development of an anisotropic layer model may indicate a test

configuration where improved sensitivity may be obtained.

8.5 Suggestions for future work

It has been shown in this thesis that the isotropic model of the oxide layer is too simplistic to be

used for quantitative comparisons with experiments at oblique angles of incidence. Further

refinement of the theory is therefore recommended, which will extend the existing isotropic

model of the layer to incorporate the anisotropic properties of the oxide.
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Conclusions and suggestions for further work

The theoretical and experimental results presented in this thesis suggest that the detectability of

oxide layers between the aluminium and epoxy is vely dependent on the level of porosity in the

oxide layer, and if the porosity is between 50 % and 60 % then the detection of the oxide at

normal incidence is impossible regardiless of the thickness of the layer. It is therefore suggested

that further work can be carried out to quantitatively relate the reflection coefficient to the oxide

porosity, the level of porosity being obtained independently by optical measurements on

sections takes through the interface.
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Appendix A

Amplitude spectrum method for the measurement of phase velocity

This paper was based on work carried out by T. P. Pialucha, the contribution of Dr P. Cawley

being that normally associated with the supervision of PhD students. Dr C. C. H. Guyott was

involved in early work on the topic. The presentation in the paper was developed entirely by T.

P. Pialucha.
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An amplitude spectrum technique for the measurement of the phase velocities of waves in
media, which can be dispersive and attenuating is presented. In this method the variation
of phase velocity with frequency is calculated from the longitudinal resonant frequencies,
the corresponding mode numbers and the distance between the boundaries of the tested
material. The amplitude spectrum method has been found to be superior to the existing
phase spectrum technique when testing thin specimens, where the different reflections from
the two boundaries cannot be separated in the time domain. Comparison between the
phase spectrum technique and the amplitude spectrum method has been carried Out Ofl a
3.2 mm thick aluminium plate (non-dispersive medium) and a 3.15 mm thick epoxy resin
(dispersive medium), excellent agreement being shown between the two methods.

Keywords: material property measurements; ultrasonic dynamic measurements;
phase velocity; ultrasonic resonances

Ultrasonic velocity measurements are widely used in
non-destructive testing to check elastic constants and to
monitor residual stress1 6, It is frequently necessary to
obtain very accurate velocity values, particularly for stress
measurements, since the influence of stress on velocity is
relati'.ely small. Measurements can be made in either the
time or frequency domains. In the time domain approach,
the transit time between two parallel faces ola specimen
is determined by the velocity of sound in the tested
material and the distance between its boundaries. The
major limitation of this technique is the difficulty of
resolving the consecutive echoes from the plate when the
thickness of the sample is small, and therefore deconvolution
theory has recently been applied to enhance the resolution'.
The time domain technique, however, is unable to cope
with dispersive media, where the pulse changes its shape
as it propagates, which is the case when some non-metals
are to be tested. To cater for these applications, frequency
domain techniques have been employed8.

The first frequency domain methods used to measure
phase velocities employed continuous monochromatic
waves or narrow band pulses 9. Subsequently, the
application of the Fourier transform of wide band pulses
in the experimental determination of phase and group
elocities has beer. discussed9. Here the phase spectra of

the pulses were used to evaluate the variation of phase
and group velocities in the material. Sachse and Pao
compared the results obtained using this method with
those from the existing narrow band x-point' phase
companson technique, where the half-wavelength of a
harmonic wave is determined by varying the distance
between the transmitting and receiving probe and
determining the shift required to change the phase of the
rccciing signal by (Reference 9). The experimental
results of the two methods showed very good agreement.
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However, us is necessary to measure the phase velocity
in a thin layer of, for example, adhesive, it may not be
possible to separate the consecutive reflections from its
boundaries, making it impossible to use the phase spectrum
approach. In this Paper an amplitude spectrum'°'3
method is proposed to evaluate the variation ofthe phase
velocity in dispersive, attenuating media. To compare the
amplitude spectrum approach with the existing theories,
the phase spectrum method is reviewed and phase
velocities are obtained experimentally using both the
amplitude and phase spectrum techniques.

Theory

Background

If it is assumed that a harmonic wave propagating in an
unbounded medium in a positive direction can be
expressed as

u(x, t) A exp[i(wt - Lx - 4))]exp[ —ax]	 (I)

where A is an arbitrary amplitude, w is the angular
frequency of the wave, k denotes the wave number
(k - w/c, where ' is the phase velocity of the harmonic
wave and in general can be frequency dependent), 4) is
the phase, and a denotes the decay constant as the nave
propagates through the medium. Ii can be shown that
any permissible waveform propagating in a positive
direction can be expressed as a linear combination of all
harmonic waves of Equation (I)', that is

u(x, t) — l/(2ir) 

J {f 
A(w, v)exp[ —i4)] d4)}

xexp[i(wi—L)] exp[—ac]dw	 (2)
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For x =0 the equation above reduces to

u(O, f)= 1/(2n)	
{f 

A(w, t) exP[_i]d4}

xexp[kot]dw	 (3)

Applying forward and inverse Fourier transforms, the
time history u(0, t) at x = 0 can be expressed as

u(0, t)= l/(27z)J{$u(0. t) exp[-wt] dt}

xexp(kot]dw	 (4)

Comparing Equation (3) with Equation (4) it can be seen
that the inner integral of Equation (3) must be equal to
the Fourier transform of the waveform at x 0, i.e.

_ 

A(w, t)exp[-ifld= _ u(0, t)exp[-kot]dt

= F(u(O, t))	 (5)

where F denotes the Fourier transform operator. Therefore
Equation (2) takes the form

u(x, t)= l/(2n)	 F(u(0, 1)) exp[i(wt-kx)

xexp-ax]dw	 (6)

which can be re-written as

u(x, t)= l/(2n)	 {F(u(0r))exP[_ikx1 exP[_ax]}

xexp[kor]dw	 (7)

Using the same argument as in Equation (4), the expression
in curly brackets is the Fourier transform of u(x, r) so
finally

F(u(x, t))-F(u(O, t)) exp[-ikx] exp[-ocx]	 (8)

An expression of this form was obtained by Sachse and
Pao in reference 9.

The phase spectrum approach
Sachse and Pao9 presented a method of obtaining the
phase velocity of a wave from two separate measurements.
For the first measurement, two transducers operating in
through transmission mode were placed in intimate
face-to-face contact to obtain a reference phase spectrum.
For the second measurement, one transducer was
positioned on each face of the test specimen to find the
phase spectrum of the pulse propagating through the
material. The phase velocity was then calculated from
the difference between these two phase spectra.

A minor modification of this technique is to use a single
transducer, working in pulse-echo mode at normal
incidence, to excite a specimen immersed in water. In this
case, the phase spectrum of the reflection the front face
can be taken as a reference, and may be used with the
first reflection from the back face to calculate the phase
velocity. The time history of the signal reflected from a

•1

I

FIgure 1 Response of 3.2 mm thick aluminium plate to pulse at
normal incidence. F the front face reflection and B, are succ.ssuve
reflections from the back face

plate of thickness L consists of the reflection from the
front face of the plate followed by a family of consecutive
reflections from the back of the specimen (see Figure 1).
The time-lag between two consecutive reflections is
determined by twice the thickness of the plate as the wave
has to traverse the specimen twice to be received back
by the probe. The front face reflection is out of phase
with the reflections from the back of the specimen because
the impedance of the tested material is higher than the
impedance of water.

Consider the face reflection and the first reflection from
the back of the specimen. lithe first reflection from the
back of the plate is denoted as u(0, t), then the front face
reflection can be expressed as

U(t)= -qu(-2L, t);	 q>0	 (9)

where q is a real constant and the minus sign accounts
for the change of phase of the front face reflection with
respect to the reflections from the back of the plate. From
Equation (8) the Fourier transform of the front face
reflection is given by

F(U(t)) = F( -qu( -2L, t)) = -qF(u(0, r))

x exp[ik2L)exp[a2L]	 (10)

where r.2L represents the apparent damping of the system
'seen' from the point of view of the receiving probe. The
apparent damping is not only dependent on the attenuation
of the wave within the plate, but also on the impedance
of the tested material compared with that of the media
on both sides of the specimen. In many cases (e.g.
aluminium or glass plates immersed in water) the
attenuation of the wave within the test piece is negligible
compared with the loss due to transmission into the
medium behind the plate, and since the transmission
coefficient is frequency independent it is reasonable to
assume that the apparent damping coefficient, a, is
constant with frequency. If Q = q exp[s2L]

F(U(t))= -QF(u(0, t))exp[ik2L]	 Q>0	 (11)

Therefore

F(u(0, t))= IF(u(0, t))Iexp[i4,)	 (12)

where IF(u(0, '))I is the amplitude spectrum of the first
back face reflection, and 4' is the corresponding phase
spectrum. From Equation (11) the Fourier transform of
the front face reflection can be expressed as

F(U(t))= -QF(u(0, t))exp[ik2L]

= IQF(u(0, t))Iexp[i] 	 (13)
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where I QF(u(O, t)) is the amplitude spectrum of the front
face reflection, and = # + 2kL + xis the corresponding
phase spectrum. The constant x in the expression for
appears because the front face reflection is out of phase
with the back face reflection. To remove this constant,
the front face reflection can be multiplied in the time
domain by - I and the Fourier transform F( -
rather than F(U(r)) can be calculated in Equation (13).
The difference in the phase spectra of these two reflections
is then zt4 - -	 2kL 2Lw/c, so finally the phase
velocity can be calculated from9

c-2Lw/A4	 (14)

Amplitude spectrum approach
An alternative technique using the amplitude spectrum
has been developed, which overcomes the requirement
for the separation of successive pulses in the time domain.
The analytical derivation of the equation from which the
phase velocity can be evaluated is presented below in two
stages. First, the spectrum of the front face reflection and
the first back face reflection alone is discussed. Then the
whole time history received from the tested specimen (the
front face reflection and the family of the back face
reflections) is analysed, and the equation for the
determination of the phase velocity is derived.

Front face and the first back face reflection only. The

time history consisting of the front face and the first back
reflection from the tested plate can be expressed as
U(t)+u(0, r). Therefore, from Equations (12) and (13),
the Fourier transform of the sum of the two reflections
can be written as

F{u(0, t) + U(t)} = I F(u(O, t))I exp[i4]

-Q exp[i(4+k2L)]}

= IF(u(0, t))I( 1 -Q exp[ik2L])

xexp[i4J	 (15)

From Equation (15) it can be seen that the amplitude
spectrumislF(u(0,t))I(1_QeXp[ik2LJ),sOifIF(U(O,t))I
is a slowly varying function of frequency then, since Q is
a positive constant, the minima of the amplitude spectrum
will occur when exp[ik2L] = 1, that is when

2Lw/c-2vn;	 m—O,1...	 (16)

If the frequency of a minimum is measured and the index,
m, of the minimum is known, it is possible to determine
the phase velocity from

c-2Lw/2irm-211m	 (17)

where f=w/2r. Equation (17) can also be derived
directly from Equation (14) by setting z4=2xm.
Comparing the two approaches, it is immediately seen
that the phase spectrum method gives an estimate of the
phase velocity as a continuous function of frequency,
while the amplitude method gives values of phase velocity
only at discrete frequencies. Therefore, if good separation
of the reflections can be achieved, the phase spectrum
approach gives more points on the graph (a continuous
function). However, when successive reflections captured
by the transducer are superimposed (which can occur
when the thickness of the plate is small, or when different
families of waves with different velocities are excited, for
example when longitudinal and shear waves are present),
the amplitude spectrum technique can still extract the

phase velocities. However, in this instance it will not be
possible to analyse the front face and the first back face
reflection alone since the first back face reflection will
not be separated from the subsequent reflections. Therefore
it is necessary to consider the complete time history of
the received signaL

Front face and all back face reflections. The time history
R(t) of the signal received by the transducer can be
expressed as the sum of the reflection from the front face
and the series of the reflections from the back of the test
plate

R(t)= U(t)+Z u(2Ln, t)	 (18)

Let us concentrate on the second term of Equation (18).
From Equation (8) the Fourier transform of the family
of reflections from the back of the specimen can be
expressed as

F{	 u(2Ln, t)} 
=	

F{u(2Ln, t))

=	 F(u(0, r))exp[—ik2Ln]

xexp[a2Ln]}	 (19)

so

F{	 u(2Ln, r )} = F(u(0, tj)	 (exp[ —ik2Ln]

xexp[—a2Ln]}	 (20)

Setting z = exp[ - 2L(ik + a)], the summation in Equation
(20) can be expressed as a geometric series

{exp[_ik2Ln]exp[—a2Ln]=f	 (21)

and assuming that a >0 so that IzI <1, which is the
requirement for convergence of the geometric series

(22)

The assumption that a is positive means that each
consecutive reflection from the back of the specimen is
smaller than the previous one, which is the case in reality.
From Equations (20) and (22) and putting k = w c

F{Z u(2Ln, r )} = F(u(0, t))

x (l—exp[-2L(iw c+a)]}'
(23)

From Equation (23) it can be seen that the spectrum of
the family of reflections from the back of the test sample
is equal to the spectrum of the first reflection multiplied
by 1 —exp[-2L(ko/c+a)]}1. The term F(u(0, t))
characterizes the properties of the pulser-receiver and the
probe, while the information about the plate is contained
inthe term l—exp(-2L(ko/c+a)]}.

if it is assumed that the apparent attenuation, a,
is independent of frequency, the locus of the points
described by the expression I —exp [-- 2L( ko c+a)] in
the complex plane forms a circle with its centre at Re - I,
Im-0 and radius, r—exp[-2LaJ. Therefore the term
{l—exp[-2L(iw c+a)]} in Equation (23) is the
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Figure 2 Curcl.descnbed by expression 1 —sxp(-2L(,w/c+s)
end its inverse mapping 2Lx —07, L —3.2 mm, s -1094 m
2xk < 2Lw/c <2x (k +1). k —0.1....

inverse mapping of this circle. Since s >0 and r < 1, the
locus of the circle will never include the origin of the
complex plane. Hence the inverse mapping will always
transform the circle into another circle. The smaller circle
in Figure 2 is the locus of the points described by the
term l-exp[-2L(iw c+1fl. The triangles mark the
positions of points equally spaced in frequency, with
frequency increasing in the clockwise direction. The larger
circle is the inverse mapping of the smaller one and is
described by the term { I - exp[ -2L(iw s)]}, which
characterizes the sum of all the reflections from the back
face. Note that points whose frequencies satisfy the
equation 2Lw c — 2nk = const, k =0, I,... appear at the
same point on the circle.

In the complex plane. the inverse mapping may be
regarded as a change in the magnitude of the position
vector of the point from r to I r followed by reflection
about the real axis. Thus, in Figure 2, P is mapped to Q
and finally to S. The dotted lines show the geometric
construction performed to obtain the inverse mapping
so that the points marked by the triangles are mapped
into the points marked by the squares. As can be seen
from the graph, the loci of the points described by the
term { I -exp[-2L(iw c + s)]} ' orbit the circle non-
uniformly, the rate of change of phase increasing near
points of maximum amplitude. If it is assumed that
I F( u(0, t)) is a slowly-varying function of frequency,
then the maxima in the amplitude spectrum

u(2Ln,

willbedefinedbytheterm{1-exp[-2L(iw c+s)]}
alone.

Hence the peaks in the amplitude spectrum of the
Fourier transform of the family of reflections from the
back of the plate occur when the circle in Figure 2,
describing all the reflections from the back face, crosses
the real axis. Therefore the condition for the occurrence
of the maxima can be expressed as,

exp[-2Liw c]=l	 (24)

which is equivaknt to Equation (16). From Equations
(11) and (23) the spectrum of the whok time history
captured by the probe including the reflection from the
front face can be expressed as

F{	 u(2Ln, t) + U(:)} F(u(O, t))

{1-exp(-2L(ko c + e)])-Q exp [i2lio c]
(25)

The term Q exp l i2Lw c]. characterizing the reflection
from the front face in Equation (25), can be visualized
in the complex plane as a circle with its centre at
the origin and radius Q as seen in Figure 3. The
term { I - exp[ - 2L(iw/c + a)]) , which was already
discussed and plotted in Figure 2, is also shown for
convenience in Figure 3. The Fourier transform of the
whok time history, calculated from Equation (25), which
is the sum of the Fourier transforms of the back face
reflections and the front face reflection, forms a kidney-
shaped curve in the complex plane (see Figure 3). The
points equally spaced in frequency, marked by squares,
show that for the majority of the frequency range, the
amplitude (which is represented by the radius from the
origin of the complex plane) is roughly constant, with
rapidly decreasing magnitude near the minimum. Note
that the frequencies of these minima correspond to those
of the maxima of the spectrum of the reflections from
the back face, and therefore satisfy the conditions of
Equation (16).

For the condition stated in Equation (16) (w = irnw L)
the absolute value of the expression in the curly brackets
in Equation (25) goes to a minimum value given by

{(1-exp[-2L(iw c+)])'-Q exp[i21.o

={(l-exp[-2Ls]y'-Q}	 (26)

From the above equation it can be seen that the depths
of the minima depend on the apparent attenuation s of
the wave as well as on the relationship, Q, between the
amplitudes of the reflections from the front and back
faces of the specimen. The value of Q depends on the
impedances of the medium between the transducer and
the specimen, the tested material and the medium at the
back of the plate.

Figure 4 shows the Bode plots of the three terms
discussed above, namely Q exp[i2Lw c] (characterizing
the front face reflection), 1 - exp [ - 2L( iw c + s)] } -'
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Flgurs3 Nyqui.tplotofth.t.rm{1—exp(-2L(aw c+uo)]} 1

from Eqution (23) ch.rsctsnzing th. sp.ctrum of .11th. reflections
from th. back ic. and the tanu (1 —uxp(-2L(iw/c+s)]}' -
0 isp (,2Lw/c] from Equation (25) cheracterizing the spectrum of
ths whole time history received from the plate at normal incidenc..
2Ls-07. L-32 mm. .-1094 0-34. c-6348 ms,
2sk .c2Lw/cc2s(k+1) *—O I .. is, denote points squally
spaced m frequency
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19.5
Mu)

Figur.4 The ampirtude variation of the tecm{1 —exp[-2L(ko/
c+a))} from Equation (23) characterizing the spectrum of ill
the reflections from the back face and the term { 1 - .xp ( —2L (kul
c+e)J}' —Qexp(,2Lw/c]from Equation(25)characterizingthe
spectrum of the whofe time history received from the plate at normal
incidenc.2Lx—O.7.L =3.2mm.z-1O9.4m'.Q-3.4.c-6348
ms'

(characterizing the sum of all the reflections from the
back face), and their sum (characterizing the whole
response from the plate). In Figure 4 the amplitude of
the Fourier transform of the front face reflection becomes
a straight horizontal line of amplitude Q . The spectrum
of all the reflections from the back face shown in
Figure 4 produces a family of maxima, whose sharpness
depends on the apparent attenuation of the system, and
whose spacing depends on the phase velocity, c, of the
wave within the tested medium and the distance, L,
between its boundaries. The amplitude spectrum of the
whole time history from the tested plate (see Figure
produces a family of minima, which occur at the sa
frequencies as the maxima of the Fourier transform
the reflections from the back of the plate. Therefore, wi
the Fourier transform of the time history including 1

front face reflection is known, the phase velocity can
calculated from Equation (17), the frequencies bci
those where the amplitude spectrum is a minimum.

Experiments

Equipment

To compare the amplitude spectrum method with the
phase spectrum technique, three experiments were carried
out. As an example of a non-dispersive medium, a
3.2 mm thick aluminium plate was taken. Then, to
investigate the variation of phase velocity with frequency
in a dispersive material, a 3.15 mm thick sample of epoxy
resin (Ciba-Geigy MY750) modified by ATBN rubber
was examined. In the third test, to show the application
of the amplitude spectrum method to data in which the
front and back face reflections could not be separated, a
0.40 mm thick steel shim was used.

The setup used for the test was similar to that described
in reference 14 and is shown schematically in Figure 5.
The ultrasonic transducer (10 MHz Rolls Royce MatEval,
unfocussed) was excited by a Panametrics 5052 PRX75
pulser-receiver. The time history received by the same
transducer was amplified in the pulser-receiver unit
and digitized at a 50 MHz sampling rate using the LeCroy
9400 oscilloscope. The signal captured by the oscilloscope
was averaged 50 to 100 times to improve the signal-to-

cta

L ] L	 H
Specfniin -	 Ijsr	 DqI fluccpe
(BSK2033)	 DQ986)	 (LaCroy9400)

Wo*

(( (
-

titrosome /	 Piiw /reosrver
I	 (PUII..oJtiiCl 5052

PRX75)

Figure 5 Setup to perform the measurements

noise ratio. To perform an FFT of the captured waveform,
the time data was passed via a Hewlett Packard 9816
microcomputer to a B&K 2033 High Resolution Spectrum
Analyser. The time record consisted of between 1000 and
2500 points at a 50 MHz sampling rate from the
oscilloscope, which were padded with zeros to form a
10240-point data record. The complex spectrum from the
spectrum analyser was then transferred back to the
microcomputer to carry out the necessary calculations.

Aluminium plate
To test the new method on a non-dispersive material, a
3.2 mm thick aluminium plate was examined. Figure 1
shows the time history of the captured signal. The time-lag
between the consecutive reflections is determined by the
distance between the front face and the back face of the
test plate and the velocity of sound in the material.
Figure 6 shows the amplitude spectra of the front face
reflection and the train of the back face reflections from
Figure 1. The variation in the amplitude spectrum of the
front face reflection (corresponding to Equation (11))
characterizes the property of the pulser-receiver and the
probe and the impedances of water and aluminium. The

I

I
I 1Z

Figure 6 Spectra of the front face reflection and the family of the
reflections from the back face from the 3.2 mm thick aluminium
plate The mode numbers of the longitudinal modes are indicated
on the spectrum of the back face reflection The time domain
,espose is shown in Figure 1
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plot reaches its maximum value at a frequency of
10 MHz, which is in agreement with the specification

of the probe used for the experiment. The amplitude
spectrum of the reflections (corresponding to Equation
(23)) follows the same trend as the front face reflection,
with the superposition of a series of maxima (corresponding
to the term (1 - exp( - 2L(iw/c + a]) -' in Equation
(23)) The doubk peaks seen in Figure 6 at frequencies
of about 3, 5 and 7 MHz are caused by the presence
of shear modes in the plate due to the generation of
edge waves by the probe. This phenomenon is discussed
in detail elsewher&'. Figure 7 shows the amplitude
spectrum of the whole time response from Figure 1. The
minima in Figure 7 occur at the same frequencies as the
maxima of the amplitude spectrum of the reflections from
the back face shown in Figure 6.

Equation (23) shows that the ratio of the amplitude
spectrum of the reflections from the back face of the
specimen to that of the front face reflection is given by

F{	 u(2Ln, t)}/F(U(t))

{1—exp[-2L(iw/c+a)]}Q	 (27)

and Equation (25) shows that the ratio of the amplitude
spectrum of all reflections to that of the front face
reflection is given by

u(2Ln, t)+ U(1)}/F(U(t))

({I —exp[-2L(iw/c+a)])'

- Q exp[i2Lw/c])Q	 (28)

Figure 8 shows the experimentally determined ratios of
the spectra from the data of Figures 6 and 7, while Figure 4
shows the theoretically computed plots of the terms
{1—exp[-2L(ko c+a)]) and {l—exp[-2L(ico
c+a)]}—Q exp[i2Lw c] usingvalues ofL, c and a
appropriate to a 3.2 mm thick aluminium plate immersed
in water. There is a good agreement between the form of
the two diagrams; the noise seen at high and low
frequencies in Figure 8 is due to the low signal levels
produced by the transducer in these regions(see Figure 6).

The points on Figure 9 show the phase velocities
calculated from Equation (17) for each of the minima in

Frency (MHZ)

Figure 7 Spectrum of the whole lime history (front face and the
1I beck face reflections) shown in Fsgine 1 Mode indices of the

longitudinal modes are shown

Figure 9 Division of the spectrum of the reflections from the beck
face by the spectrum of the front face reflection. corresponding to
Equation (27). end division of the spectrum of the whole time
history by the spectrum of the front face reflection, corresponding
to Equation (28)

ry ..n-.L,

Figure 9 Measured phase velocity in 3.2 mm thick aluminium
plate Companson between the phase spectrum (solid line) and
amplitude spectrum (discrete points) technique

Figure 7 and so indicate the relationship between phase
velocity and frequency. As expected, since aluminium is
non-dispersive, there is very little variation of phase
velocity with frequency. The phase velocity was then
calculated using the phase spectrum technique. This was
achieved by gating out the front face and first back
reflections in turn and computing their spectra. The phase
spectrum of each reflection is then given by

4(w)=arctan(Im(w) Re(w))-2xm 	 ( 29)

where Im(w) and Re(w) are the imaginary and real parts
of the spectrum and m is an integer, which increases with
frequency to give a continuous phase spectrum. This
presents no problem if reliable data are obtained at low
frequencies since m can be taken as zero at zero frequency
and can be indexed at each successive discontinuity in
arctan(Im(w) Re(w)) as the frequency is increased.
However, if noise is present in the lower frequency range,
as is usually the case (see Figure 6), this procedure is
unreliable and the appropriate value of m at the start of
the usable frequency range of the probe must be estimated
by considering the frequency spacing of the discontinuities
in the region of high signal-to-noise ratio. This procedure
is satisfactory provided that the variation of phase
velocity with frequency is modest. Another way of
obtaining an appropriate value of m is to use the
amplitude spectrum approach to find phase velocity
values at discrete points and then to use the phase
spectrum technique to determine more data points in the
frequency range where the signal-to-noise ratio is
satisfactory.
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The solid curve in Figure 9 shows the phase velocities
calculated using the phase spectrum technique. There is
excellent agreement between the two methods, the
maximum difference between them being under 0.1 %.
From Equation (17) it can be seen that the error in the
velocity calculation is dependent upon the errors in the
measurements of the plate thickness and the resonant
frequencies. The determination of the resonant frequencies
depends on the frequency resolution, 4j of the spectrum.
In the experiment, b.f- 4.88 kHz giving a velocity error
due to frequency resolution of ± 15.4/rn (ms t ), where
m is the mode number. The plate thickness was measured
with an uncertainty, AL -0.005 mm leading to a velocity
uncertainty of ± 5 m s', so the overall uncertainty was
±(15.4/m+5) ms1.

3.15 mm thick resin plate
A similar procedure was applied to measure the phase
velocity in a 3.15 mm thick epoxy resin plate (Ciba-Geigy
MY750 modified by 15% ATBN rubber, HYCAR
1300 x 16 manufactured by BF Goodrich Chemical UK).
Figure 10 shows the time history of the response from
the plate. In this test, to enhance the strength of the signal
reflected from the back face, the plate was air-backed.
This was achieved by bonding a thin walled cylindrical
cap to the reverse side of the specimen at the test position.
Transmission losses into the water when the specimen
was immersed were then greatly reduced. Figure 11 shows
the amplitude spectra of the front face reflection and of
the family of the back face reflections. Here it can be seen

I

I

I

Figure 10 Respons. of 3.15 mm thick spoxy resin sample to pulse
at normal incidence. F is the front face reflection and 8, are
successive reflections from th. back fac

Freqiicy (MHZ)

Flgurs 11 Spectra of the front face reflection. th. family of
rsfl.ctions from thu buck face and thu whole time respons, of
315 mm thick spoxy resin plate Time response is shown m F,gw. 10

that the apparent attenuation of the wave is no longer
constant and increases with frequency. Indeed, in the low
frequency region (1.5 to 5.5 MHz), the two amplitude
spectra are of roughly the same amplitude, while as the
frequency goes higher, the two plots diverge substantially.
This is in contrast with the experiment with the aluminium
plate, where the amplitude spectrum of the reflections
from the back face followed the same trend as the
amplitude spectrum of the front face reflection (see
Figure 6), producing the series of minima of similar depths
(see Figure 7) throughout the whole working frequency
range of the transducer used.

When the Fourier transform of the whole time response
of the resin plate is performed (see Figure II), the deepest
minima occur in the range between 1.5 and 5.5 MHz,
that is when the amplitude spectrum of the family of the
back face reflections is nearly equal to the amplitude
spectrum of the front face reflection, and in this frequency
range the phase velocity can be calculated from Equation
(17) with little error. At higher frequencies the accurate
determination of the frequencies of the minima is more
difficult. To obtain sharper minima in the higher frequency
region, it is possible to divide the amplitude of the front
face reflection or to multiply the b.ick face reflections by
a real constant (in the time domain) to reduce the
differences between the Fourier transforms of the front
face reflection and the family of reflections from the back
face.

Figure 12 shows the FFT of the edited signals. Here it
can be seen that it is possible to highlight the different
ranges of the spectrum by means of simple multiplications
or divisions of the different reflections from the test plate
in the time domain. Multiplication of the back face
reflections is equivalent to the division of the front face
reflection by the same constant. For example, multiplication
of the back face reflections by 24 or division of the front
face reflection by 24 would have a similar effect to
multiplication of the back face reflection by 6 and division
of the front face reflection by 4 (which can be more
convenient when, for example, the waveform in the
computer is represented in integer form). The validity of
this approach is demonstrated in the Appendix. In
practice, the multiplication or division is achieved by a
multiplication of the reflection of interest by a window
functio&3

Figure 13 shows the variation of the phase velocity
calculated from Equation (17) together with the

niiitçlisd by 6

nUhpled by 6-.50 forsfn

2r2'.	

Bock ref Uctions

Reuxy (M$g)

Figure 12 Spectra of the edited time history from Fsgurs 10 Mod.
numbers of longitudinal modes are shown
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Irsquency (MPIZJ

Figure 13 Measured phase v.locuty in 3.15 mm thick epoxy resin
plate Companion between. -. pl'iase spectrum. 0. amplitude
spectrum method

corresponding plot obtained using the phase spectrum
technique. Again, there is excellent agreement between
the two methods. The variation of the phase velocity with
frequency in Figure 13 indicates that the epoxy resin is
weakly dispersive. In the experiment, the frequency
resolution of the spectrum, 4f= 4.88 kHz and the plate
thickness measurement uncertainty, AL = 0.005 mm, giving
an overall velocity uncertainty of ± (15.4/rn + 2) ms
where in is the mode number.

Steel shim
To test the amplitude spectrum method for the case when
the different reflections are superimposed, a 0.40mm thick
steel shim was used. Figure 14 shows the response of the
shim when excited by the 10 MHz transducer used in the
earlier tests. From the plot it can be seen that it is
impossible to distinguish between the reflections, while
in the frequency domain (see Figure 15) the minima give
the opportunity to extract the required phase velocity if
the thickness of the plate is known. 7 able 1 shows the
results obtained from Figure 15 using Equation (17).

The Table shows that it is still possible to obtain the
variation of the phase velocity with frequency though the
points are widely spaced in frequency.

Conclusions
It has been shown that the phase velocity of a given wave
can be accurately measured using the amplitude spectrum
technique. One of the biggest advantages of this method
over the phase spectrum method 9, is that measurements
can be obtained even when successive reflections from
the boundaries of the plate cannot be separated in the
time domain. The method will therefore be particularly
useful when a thin layer of for example adhesive, must
be tested. Excellent agreement between the amplitude
spectrum and phase spectrum methods was obtained on
both non-dispersive and dispersive materials when the
specimens were sufficiently thick for the different echoes
to be separated. In cases when the different reflections
from the test specimen can be separated, the phase
spectrum technique is advantageous because many more
data points are computed. This facilitates the calculation
of group velocity since this effectively requires differentiation
of the phase velocity with respect to frequency 9. However,
it has been shown that the implementation of the phase
spectrum technique is difficult when the signal-to-noise
ratio is poor in the low frequency region. It is therefore
suggested that a combination of the two methods may

I

.1

I
I
Figure 14 Response of 040mm thick steel shim to pulse at normal
incidence

.1I
I

19
Frsquuncy (MHz)

Figure 15 Spectrum of the time history shown in Figure 14 The
mode numbers of the longitudinal modes are shown

Table 1 Phase velocity calculated from Figure 15

Phase velocity
Index of minimum	 Frequency (MHZ)	 (ma 1)

1	 7.510	 6008
2	 15068	 6027

give satisfactory results. Firstly the amplitude spectrum
technique can be used to determine values of the phase
velocity at discrete points, then the phase spectrum
method can be applied to obtain more data points in the
region of frequencies where the signal-to-noise ratio is
adequate to obtain a continuous phase spectrum without
ambiguity.
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Appendix

Position of minima in amplitude spectrum when the
apparent damping is frequency dependent
Consider the Fourier transform of the family of the back
face reflections. From Equation (20) we have

F{ u(2Ln, t)} = F(u(0, t))	 {exp[ —ik2Ln]

xexp [ —a2Ln ]} (20)

where both k and a are now frequency dependent
functions. Variation of k with frequency effectively means
that the points forming the smaller circle shown in
Figure 2 will not be equally spaced, but the radius of the
circle will remain the same. Therefore the shape of the
inverse mapping of this circle, shown in the same figure,
will be also unchanged. When a is frequency dependent,
the circle shown in Figure 2 will be distorted to a spiral,
which will be of decreasing radius if a increases with
frequency. It is necessary to check whether the minumum
condition stated in Equation (16) still holds for this case.
To simplify the calculations, the spectra of the front and
the back reflections will be expanded as a first order
polynomial (the first two terms of the Taylor series) in
the vicinity of the frequency for which the condition stated
in Equation (16) is satisfied. Next the difference between
the expansions will be evaluated to determine the position
of the minimum.

Let us first calculate the values of the Fourier transforms
of the front and back reflections at the points satisfying
condition in Equation (16), that is exp [ik2L) - I. Putting
F(u(0, t))se 1, as this term is of no importance here, from
Equations (11) and (23), the front and back reflections
can be written as

F(U(t))... L -Q	 (30)

F{
Z u(2Lnt)}	 -{l—exp[-2La])	 (31)
a0	 w-w L

where m—O,1,...and

Q—qexp[-2Liz]	 q>0	 (32)

Now let us calculate the frequency derivative of

F{u(2Ln. t)}. Putting F(u(0, t)). 1 and setting

{exp[—ik2Ln)exp[—a2Ln]}

dB/dw= -	 (exp[—ik2Ln] exp[—a2Ln]

x 2Ln(i dk/dw + da/dw)}	 (33)

Now setting b — exp [ - ik2L] exp [ - a2L], the equation
above can be expressed as

dB/dco- —2L(idk/dw+da/dw)	 (nb")	 (34)

The polynomial 
.O 

(nba ) is the a transfor&6

F(z)=	 (f(n)z)= z1/(1 _z_i)2	 (35)

where z = b 1 and f(n) n. Therefore

(nb")—b/(l — b)2	 (36)

Equation (34) can now be expressed as

dB/dw = —2L(i dk/dw + da/dw) exp[ - ik2L]

x exp[—a2L]/(l —exp[—ik2L]

xexp[—Lz2L])2	 (37)

For the condition stated in Equation (16), exp[ - ik2LJ = 1,
and Equation (37) becomes

dB/dw= —2L(idk/dw+ds dw) exp[—a2L]

/(l —exp[—a2L])2	 (38)

The frequency derivative of the Fourier transform of the
front face reflection can be evaluated from Equation (10).
Putting F(u(0, t))ss 1, as before

d{F(U(r))} dw=d(—q exp[x2L]exp[ik2L]) dw

— — q exp[s2L] exp[ik2L)

x2L(idk/dw-fdx dw)	 (39)

For the condition stated in Equation (16), exp [ik2L] = 1,
and the equation above becomes

d{F(U(r))) dw ,_ L= —q exp [ a2L ] 2L( idk dai

+ds dw)(40)

Figure Al shows the Nyquist plot of the Taylor
expansions of the front and the back reflections. This is
effectively an expanded version of Figure 3 in the vicinity
of the point where the front face reflection and the family
of the back face reflections cross the real axis for the case
when the apparent damping of the system, s, increases
with frequency w. The notation used in Figure Al is as
follows

Va, u —2LPds dw; V,— —2LPdk dw,

P,--2LQdxdw;P 1 --2LQdkdw	 (41)

where V,, and V are the radial and tangential components
of the back face spectrum derivative; VF,, V,, are the
radial and tangential components of the front face
spectrum derivative; P = exp[ - 22LJ (1 - exp[ - s2L])2;
Quq exp[-2Ls]: and D=Q—(l—exp[—s2L]).
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tan	
V, + V, 1 dk dw
	 (42)

dDtanô [Q — ( I—exp [ —a2L])] tanô	 (43)

V[(VHr+VFr)2+(VI+Vpt)2]12	 (44)

d=—Vtw	 (45)

where iw denotes the frequency error between the points
where the minimum of the difference between the linear
expansions occurs and the points where the condition in
Equation 16)is satisfied. After simple conversions, it may
be shown that

dx da	 [(1—exp[—rx2L]Y'—Q]
0) 

dk dw 2L(P+Q)[(da dw)2+(dk/dw)2]' 2

If it is assumed that da/dw >0, then the sign of the error
function, &u, is defined by the sign of the term in the
square brackets in the numerator, that is by the sign of
the difference between the amplitude spectra of the front
face reflection and that of the family of the back reflections.
Therefore, when the amplitude spectrum of the back face
reflections is greater than the amplitude spectrum of the
front face reflection, the shift tw> 0 occurs, which means
that the velocity will be overestimated if Equation (17)
isused.1nthecasewhen(1—exp(—a2L] iskssthan
Q, the shift w <0 occurs, which means that the velocity
will be underestimated if Equation (17) is used. If the
amplitudes of both spectra are equal, then the numerator
of Equation (46) equals zero, and Aw-O. From our
previous calculations (see Equation (26)) it is known that
this is the requirement for the deepest minima. Therefore
the deeper the minima the better the estimation of the
phase velocity from Equation (17). If the attenuation a
is independent of frequency, that is when da/dw -0, then
Equation (46) reduces to Aw -0.

Multiplication or division of the amplitude of the front
face reflection in the time domain is equivalent to a change
of the constant q in Equation (32), which depends on the
impedances of the tested material and the media on
both sides of the specimen. Therefore, multiplication or
division of the front face reflection or of the family of the
back face reflections in the time domain is similar to a
change of the relationship between the impedances of the
elements of the system under test. It is therefore valid to
adjust the relative sizes of the different reflections by
multiplication or division to obtain sharper minima in
the amplitude spectrum, and so to improve the accuracy

.of the determination of the frequencies, and also to reduce
the error term Aw.
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and eqn (B.1) becomes,

au= -1cUn. (B.4)

Bi

Appendix B

Phase velocity and attenuation of the shear wave in viscous fluids

The phase velocity and the attenuation of the shear wave in a viscous fluid can be readily

obtained by substituting the plane wave equation into the constitutive equation.

In a viscous fluid the one-dimensional constitutive equation for shear stresses can be written as

(see for example Malvern 1969),

(B.1)

where 'c is the shear stress component in the y direction in the plane perpendicular to the x axis,

r is the dynamic viscosity of the liquid, u is the displacement in the y direction, and j () is

the gradient of the velocity in the y direction along the x axis (see fig. B.1).

Consider a shear harmonic plane wave propagating along the x axis as shown in fig. B.1. The

displacement field for the shear wave is,

- t)
u(x,t) = e	 ,	 (B.2)

where o is the frequency of the harmonic process, and 13 characterises the phase velocity and

damping of the wave. For the harmonic wave described by eqn (B.2), the operator of eqn (B.!)

becomes,

a = -1(0,	 (B.3)

Equation (B.4) can be also written as,

= Ee,	 (B.5)



a2u
E = (B.9)

and also,

Eau a
i = Y, (B.lO)

AppendixB	 B2

Phase velocity and attenuation of the shear wave in viscous fluids

where,

£ = au
	

(B.6)

is the shear strain component in the plane perpendicular to the x axis and acting in the direction

of y axis, while E is the shear stiffness of the liquid and is given by,

E = -iwq.	 (B.7)

Equation (B.5) is the shear stress - shear strain relationship for the viscous fluids, from which

the expression for the value of 13 can be obtained as follows.

The equation of motion for the transverse displacements and shear stresses can be easily

obtained by writing the equilibrium equation for the infinitesimal cube and considering the plane

stress assumption,

at	 a2u
= p

which states that the transverse acceleration of the liquid volume is caused by the difference in

the shear stresses acting on this volume. Now, using the stress-strain equation (B.5), as well as

the definition of the shear strain given by eqn (B.6), the equation of motion can be expressed in

terms of the displacement field as,

(B.8)

which, after the substitution of the displacement field u, given by eqn (B.2), provides us with

the following equation,

2 E
13 =—=-uov,

p

where v is defined as the kinematic viscosity of the fluid, and is defined as,

(B.11)

V =
	

(B.12)
p



AppendixB	 B3

phase velocity and attenuation of the shear wave in viscous fluids

where r is the dynamic viscosity of the fluid. The result of eqn (B.1 1) can be also obtained

directly from eqn (2.18) of chapter 2,

=	 -ilL'	
(B.13)

p

by setting p.' = cor, and p. = 0, which is the case for all viscous fluids. From eqn (B.11) the

following expression for 13 can be derived,

(B.14)=

where,

=(ov.

After the substitution of the eqn (B.14) into eqn (B.2) we have,

•	 x
ico(— - t)

2	
eu(x,t) = e

(B.15)

(B.16)

The first term of eqn (B.16) is responsible for the propagation of the shear wave, while the

second one characterises the attenuation of the wave. From eqn (B.16) it can be seen that the

phase velocity of the shear wave is given by,

c = 2 = (2cov) 2 = (4irfv)"2	(B.17)

where f is the frequency of the shear wave. Equation (B.17) states that the liquid satisfying the

Navier-Stokes equation supports the shear plane waves whose phase velocities are an

increasing function of the kinematic viscosity of the liquid and the frequencies of the waves in

the liquid. The attenuation of the shear wave in nepers per wavelength can be obtained from the

second term of eqn (B. 16) by setting x = , where A. is the shear wavelength given by,

(B.18)

Setting x = 1 in the argument of the second term of eqn (B.16) and using eqn (B.18) and

(B.17), we have,

= 2ir.	 (B.19)
2
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Phase velocity and attenuation of the shear wave in viscous fluids

Equation (B.19) states that all viscous fluids which satisfy the Navier-Stokes equation attenuate

shear waves by the constant amount per wavelength. Substituting equations (B.17) and (B.19)

into (B 16)the shear wave can be now described as,

x -27t -iw(-t)
u(x,t) = e	 e	 ,	 (B.20)

where the expressions for the wavelength ? and the phase velocity c are given by eqn (B.18)

and (B.17).

Example 1

Let us calculate the phase velocity and attenuation of the 10 MHz shear wave in water at the

temperature of 20 degrees Celsius.

The kinematic viscosity of water at 20° C is 1 cSt, therefore,

v = 1 cSt = io6 m2/s.	 (B.21)

Using eqn (B.16), for the frequency of 10 MHz the phase velocity can be calculated as,

c = (47fV)la = (47r x 10 x 10	 10 6)lf2 = 11 (mIs). 	 (B.22)

By eqn (B.19), the attenuation of the shear wave in nepers per wavelength is equal 2it.

Example 2

The second example is the calculation of the phase velocity and the attenuation of the 10 MHz

shear wave in the silicone fluid whose kinematic viscosity is 50 cSt.

Using eqn (B.16), and putting f = 10 E6, and v = 50.0 E-6, the phase velocity can be

calculated as,

c = (4ifv)'a = (47t x 10 x 10	 50 x 10 6)1/2 = 79 (m/s).	 (B.23)

By eqn (B.19), the attenuation of the shear wave in nepers per wavelength is equal 27t for all

viscous liquids.
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Phase velocity and attenuation of the shear wave in viscous fluids

Fig. B 1 The stress and displacement fields of the shear wave.
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Appendix C

Frequency-thickness product invariance of the wave equation

In problems of reflections from thin layers it is often convenient to consider the variations of

parameters with frequency-thickness product rather than frequency and thickness

independently. The validity of this approach for all dynamic problems may readily be

demonstrated by considering the wave equation, given by eqn (2.4),

	

1.11 2a_	 -	 a2_
+ (?. + p.) V (V.11) + - V ' u +	 •j u) = p	 u	 (C. 1)

	

(0	 0)

For a harmonic process of frequency 0) the time derivative operators become,

= ico, and	 = -
	 (C.2)

After substitution of eqn (C.2) into eqn (C.1) we have,

p.+ip.' 21 + (X+p.) + i(?'+p.') V(V.ü)	 2—	
(C.3)= -0) U.

p	p

Using eqn (2.17) and (2.18), the equation above becomes,

+ a2V(V.ü) =	 (C.4)

Equation (C.4) can be used as a general equation of motion for any Continuous mechanical
medium. The mechanical property of the medium is characterised by two functions a and [

which, in general, are continuous functions in space and can be frequency dependent

Let us consider two mechanical systems, one being a scaled-down version of the other (see fig

C.1). Each of these systems has its own coordinate system, again, one being a scaled-down
version of the other. If we denote the first coordinate system as (x 1 , x2, x3), and the second

system as (Yi p Y2 y3) then the relationship between these two coordinate systems is,

(C.5)



2 —2	 2
COyS =x' (C.11)

Appendix C	 C 2

Frequency-thickness product invariance of the wave equation

where s is the scaling factor. For example if we measured the distance in inches using the i

coordinate system, and in millimetres using thej coordinate system, then s = 25.4.

If we furthennore assume that both mechanical systems are built from the same material then a

and 3 are the same in both systems. From equations (2.17), (2.18) it can be seen that,

a and have units of distance
	

(C.6)

Units of time are the same in both coordinate systems. Units of distance are different and

related by eqn (C.5). Therefore, if we denote variables in the first coordinate system by

subscript x, and in the second system by subscript y then, for the same medium in both

systems, the relationship is

a= sax, and 13y=
	 (C.7)

Equation (C.7) is always valid when o = Wy. I!? °x ^ (Dy then we will have to assume that a

and J3 are frequency independent.

Now, we are in position to write equations of motion for the two mechanical systems, each

equation being written in its own coordinates.

+ a V(V.ii) = -wii,	 (C.8)

+ c4 V(V.ii) = -wii,	 (C.9)

Using eqn (C.7) (bearing in mind the assumption about the frequency independence of a and

13), eqn (C.9) becomes,

2 —2-V2 ti + a V(V.ti) = -	 s u.	 (C.1O)

In order to yield the same amplitude fields, equations (C.1O) and (C.8) have to be the same,

which means that the right-hand sides of the equations have to be equal,

which means that,
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Frequency-thickness product invariance of the wave equation

O)= sW•
	 (C.12)

Equation (C.12) states that in order to maintain the same displacement field in a scaled-down

model of a given mechanical system, we have to drive it with a frequency scaled-up by the

same scaling factor. For example, if we had a solution of eqn (C.4) for a 10 mm thick plate at a

frequency of 1 MHz, then we can immediately obtain the displacement field for a 1 mm thick

plate at a frequency of 10 MHz as a scaled-down model version of the first solution, with the

scaling factor s = 10. The reflection coefficient computed for the 10 mm thick plate at a

frequency of 1 MHz is exactly the same as the reflection coefficient for a 1 mm thick plate of the

same material at a frequency of 10 MHz (provided that the phase velocity and attenuation per

wavelength for longitudinal and shear waves in both systems are frequency independent).
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Frequency-thickness product invariance of the wave equation

Fig. Cl Two mechanical systems, one being the scaled-down version of the other

(LONDON)
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