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Abstract 

A lubricant-film monitoring system for a conventional deep groove ball bearing (type 

6016, shaft diameter 80 mm, ball diameter 12.7 mm) is described. A high frequency 

(50 MHz) ultrasonic transducer is mounted on the static outer raceway of the bearing.  

The transducer is focused on the ball-raceway interface and used to measure the 

reflection coefficient of the lubricant in the ‘contact’ ellipse between bearing 

components.  The reflection coefficient characterises the lubricant film and can be 

used to calculate its thickness.  An accurate triggering system enables multiple 

reflection measurements to be made as each lubricated contact moves past the 

measurement location.  Experiments are described in which bearings were 

deliberately caused to fail by the addition of acetone, water and sand to the lubricant. 

Ultrasonic reflection coefficient was monitored as a function of time as the failure 

occurred.  Also monitored were the more standard parameters, temperature and 

vibration. The results indicate that the ultrasonic measurements are able to detect the 

failures before seizure.  It is also observed that, when used in parallel, these 

monitoring techniques offer the potential to diagnose the failure mechanism and hence 

improve predictions of remaining life.  

1.  Introduction 

A fluid lubricant, such as a synthetic or mineral oil has several functions in a rolling-

element bearing. It provides elastohydrodynamic lubrication between the races and 

the rolling elements and hydrodynamic lubrication between the cage or separator and 

its locating surface. It serves as a coolant if either circulated through the bearing to an 

external heat exchanger or simply brought into contact with the bearing housing and 

the machine casing. A circulating lubricant also serves to flush out wear debris and 



carry it to a filter where it can be removed from the system. It also provides corrosion 

protection [1]. If the lubricant film at the rolling element ‘contact’ collapses for any 

length of time then heating and wear of the contacting components occurs rapidly and 

eventually the bearing will fail [2]. Bearing condition monitoring is therefore of major 

interest to a range of industries particularly those continuously operating expensive 

and safety critical plant such as those in the marine, power generation and process 

sectors.   

The traditional bearing monitoring techniques of temperature, vibration and acoustic 

emission sensing, as well as wear debris analysis, measure the resultant effect of a 

failed or partially failed bearing [2,3].  Damage to the bearing surfaces and/or a loss or 

degradation of the lubricant, cause increases in the temperature of the bearing and its 

average vibration level. Recent years have seen a number of workers utilise a range of 

novel non-destructive techniques to aid the early measurement of bearing failure and 

diagnose its cause. For example, Miettinen et al [4,5] used acoustic emissions to 

monitor rolling bearings.  The concept being that any ball-raceway contact and 

production of wear debris produce high frequency sound.   

Researchers have used a range of techniques to monitor lubricant film thickness such 

as optical [6,7], capacitance [8,9] and eddy currents [10].  These approaches have the 

attraction that they provide additional information to the traditional techniques (and 

acoustic emission), and offer the potential to give early warning of failure and/or other 

diagnostic information.  However, these techniques have all proved difficult to 

implement in practice, particularly in rolling element bearings where sub-micron oil 

films are expected. Recently Anderson et al [11] used the transmission (and 

reflection) of transverse ultrasonic waves to monitor the collapse of oil-layers in thin 



fluid shaft seals.  The principle is that the presence of the lubricant causes significant 

reflection of the ultrasound and so, on collapse an increase in the transmitted 

ultrasonic energy is seen.  This approach has been shown to be entirely non-invasive 

and applicable to many industrial bearings.   

Dwyer-Joyce et al [12] and Zhang et al [13,14] demonstrated that ultrasonic reflection 

coefficient measurements can be used to monitor the lubricant-layer thickness in 

rolling element bearings.  These bearings were in the elastohydrodynamic (EHD) 

regime and the lubricant film was in the range 0.3-1.0 m.  The bearings were run 

under normal operating conditions and results were shown to agree well with models 

of the bearing performance.   

This paper demonstrates the on-line monitoring of lubricant film failure in rolling 

element bearings using ultrasound.  This is a critical step forward from previous 

studies in which the bearing was operating normally.  As the bearing failed, the 

temperature of the bearing and the vibration of the bearing housing are also measured 

simultaneously.  The results are used to explain the failure process of the ball bearing.  

This has significant implications for the diagnosis of bearing failure mechanisms and 

the prediction of remaining life in a wide range of industrial plant monitoring 

applications. 

2.  Background Theory 

2.1. Ultrasonic Reflection from a Lubricant-Layer  

When high frequency ultrasonic waves are incident on a ball bearing system their 

interactions with the lubricant film can be described by the following three-layered 

system; ‘outer raceway’-‘lubricant-layer’-‘ball’.  In terms of materials this system is 



typically steel-oil-steel.  If the thickness of the lubricant-layer is small in comparison 

with the ultrasonic wavelength, the media on either side of the layer have identical 

acoustic properties, and the ultrasound is normally incident, then the well-known 

quasi-static spring model can be used [14].  In this way, the relationship between the 

modulus of the measured reflection coefficient, R, is related to the acoustic 

properties of the three-layer system by [15]: 
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where h is the lubricant film thickness, z is the acoustic impedance of the surrounding 

medium (i.e. steel),  f is the ultrasonic frequency at which the measurement is made 

and B is the bulk modulus of the lubricant.  Note also that B = c2 where  and c are 

the density and speed of sound in the lubricant-layer respectively. From Eq. (1), it can 

be seen that for a given bearing, at a given frequency, the reflection coefficient 

changes only with the bulk modulus and thickness of the lubricant-layer.  The use of 

ultrasonic reflection coefficient measurements for bearing monitoring therefore 

inherently assumes that a number of bearing failure mechanisms are characterised by 

a change in either the bulk modulus or the lubricant-layer thickness.  In this way the 

change of the reflection coefficient can be used to help diagnose the failure mechanics 

and to provide warning prior to failure. 

The reflection coefficient is usually obtained with respect to a reference measurement 

from a known interface by:  
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where, Am(f) is the amplitude of the signal reflected from the lubricant film, Aref(f) is 

the amplitude of the reference signal and Rref is the reflection coefficient of the 

reference interface.  Typically Am(t) would be measured by first isolating in time the 

signal reflected from the lubricant film from any other signals and converting this to 

the frequency domain via a Fast Fourier Transform (FFT) to obtain Am(f).  As wide-

band ultrasonic transducers are used, so the reflection coefficient can be measured 

over a range of frequencies.  However, to maximise the speed of the measurement, in 

this paper only the centre frequency of the transducer (50 MHz) is considered.  The 

reference measurement is taken in a similar way, using the signal reflected from a 

steel-air interface obtained prior to the addition of the lubricating oil at the start of the 

experiment.  For this system the reference reflection coefficient, Rref, is that from the 

steel-air interface that, using the material properties shown in Table 1 was found to be 

0.99998. 

2.2. The Lubricated Contact Region in a Ball Bearing 

The geometry of the lubricated contact that forms when a ball is pressed onto a 

closely conforming raceway groove can be calculated from the applied load, P, the 

bearing geometry and mechanical properties and the lubricant properties [2]. Figure 1 

shows the geometry of the lubricated contact region of a ball bearing. For the bearing 

used in this paper (type 6016 deep groove), the lubricated contact region is elliptical 

in shape with the major (ra) and minor (rb) semi-contact radii given by: 
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where k and  are a measures of the shape of the contact ellipse obtained from look-up 

tables [2] and given in Table 2. E is the reduced elastic modulus and R is the reduced 

radius of curvature given by: 
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where E is Young’s modulus, v is Poisson’s ratio, R is the radius of the two rolling 

elements (subscripts a and b refer to the ball and raceway respectively) and x and y 

are the coordinate axes shown on Fig. 1. 

The geometry of the ball and raceway is such that the major semi-contact width ra is 

around ten times the minor semi-contact width rb.  As shown in Fig. 1, the elliptical 

contact of a given ball moves around the raceway in the y-direction and the so 

ultrasonic measurements are made across the minor axis of the contact ellipse.  The 

pressure distribution over the elliptical region is given by [16]: 
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where p0 is the maximum contact pressure which occurs at the centre of the contact 

ellipse. The load on the ball is not the same as that on the whole bearing, because 

several balls are in contact with the raceways at any instant. The ultrasonic transducer 

is positioned directly opposite the point of load application and so the load on the ball 

is given by the well known Stribeck equation (see for example [3]): 
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 where W is the radial load on the whole bearing and n is the number of the balls in 

the bearing. The mean and peak contact pressures are then given by: 
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For a ball bearing, operating in the elastohydrodynamic lubrication regime, the 

lubricant film thickness can be estimated from the numerically derived regression 

equations of Hamrock and Dowson [17]. They showed that the central film thickness, 

hc, can be expressed as:  
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where, U is the mean surface speed, 0 is the lubricant viscosity at the contact entry, 

and  is the pressure-viscosity coefficient, k is an ellipticity parameter, and P is the 

load on the measured ball obtained from Eq. (6).   

Pressures in the ball bearing lubricated contacts are high, and this has the effect of 

increasing both the density and the bulk modulus of the lubricant. The latter parameter 

is required for the determination of the film thickness ultrasonically from the 

reflection coefficient (Eq. (1)). Jacobson and Vinet [18] developed a model for this 

bulk modulus variation with pressure. They give an equation of state to describe the 

behaviour of the lubricant under pressure, p: 

 )1(
2

0 e)1( sts
s

p 
3B

                                                        (9) 

and the bulk modulus under pressure is given by: 
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where B0 is the bulk modulus at zero pressure, t is a lubricant specific parameter, and 

s is a function of the relative compression: 
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where 0 is the density at zero pressure, and p at pressure p. The parameter, t is 

determined empirically from tests on lubricants in high pressure cells (pressures up to 

2.2 GPa were reported in [18]).  

Substituting Eq. (9) into Eq. (10) allows the relationship between pressure and bulk 

modulus to be expressed as, 
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From Eq. (12), it can be seen that there is linear relationship between bulk modulus 

and pressure. Because of the experimental complexities bulk modulus as a function of 

pressure data is scarce; in this paper data available for an oil of a similar generic type 

[18] to that used in the experiments is used. Table 1 shows the bulk modulus 

determined at three contact pressures using this analysis.  

3.  Ball Bearing Experimental Apparatus 

Experimental apparatus capable of accurately measuring the ultrasonic reflection 

coefficient from a lubricant film in a 6016 bearing system is shown in Fig. 2.  The 

bearing test rig consisted of a rotating shaft of 80 mm diameter supported on four 



6016 ball bearings and ultrasonic transmit-receive instrumentation. As shown in Fig. 

2, bearings 1 and 4 were fitted to the ends of the shaft and fixed into rigid housings. 

Radial loads were applied to the shaft though bearings 2 and 3. The load was applied 

vertically upwards by an arrangement of compressed springs.  In this way the balls at 

the top of bearings 1 and 4 were the most heavily loaded.  The rotary shaft speed was 

controllable in the range 100-2900 rpm by a 7.5 kW electric motor.  The bearing was 

lubricated with Shell T68 mineral oil (details shown in Table 1) using a total loss 

gravity feed system. Bearing 1 was instrumented with the ultrasonic measurement 

system. An optical sensor was used, both to allow accurate triggering of the ultrasonic 

instrumentation and to measure shaft speed.   

Figure 3 shows the ultrasonic measurement system fitted to Bearing 1 in more detail.  

A focused, longitudinal wave piezoelectric ultrasonic transducer (Valpey Fisher 

50 MHz) was mounted in a small hole (17 mm diameter) drilled though the bearing 

housing such that it was normal to the top surface of the outer raceway. This 

transducer, acted as both an emitter and receiver (pulse-echo mode), and had a centre 

frequency of 50 MHz, an active element diameter of 5 mm and a focal length in water 

of 23 mm.  This equates to a theoretical focal spot size (defined at –6dB down from 

the maximum) in the plane of the lubricant film of 146 m at the centre frequency.  

The transducer was selected to ensure that the focal spot size was less than the minor 

lubricated contact diameter.  Note that the upper operating frequency is not infinitely 

variable but is limited by material attenuation and sensitivity to small angular 

misalignments which both increase with frequency.  Experience from the non-

destructive testing community [19] indicates that 50 MHz is close to the upper 

operating limit for use with steel components.  The ultrasonic transducer was 

connected to a pulser-receiver (type Panametrics 5072PR).  This outputs a Dirac delta 



function like voltage spike containing energy in the range 5-200 MHz to excite the 

transducer and contains a receive amplifier to condition the reflected signals.  The 

waveform was then digitised at 250 Msamples/s and passed to a PC for storage and 

analysis.  

Also shown in Fig. 3 is the reflective tape attached to the bearing cage. When this tape 

passed an optical sensor it generated a 5V positive pulse that then triggered a signal 

generator (type Agilent 33220A).  After the addition of an adjustable delay the signal 

generator then triggered the pulser-receiver at its maximum pulse repetition 

frequency, which was 20 kHz.  By triggering in this way, a number of ultrasonic 

pulses were used to interrogate the lubricated contact region as a ball passed under the 

transducer.  The delay between the optical trigger ultrasonic pulsing was adjusted by 

knowledge of the shaft speed and the distance between the trigger point (the reflective 

tape) and the focal spot of the transducer.  In this way a reflection coefficient profile 

was measured for each lubricated contact region, the number of points in the profile 

being governed by the rotational speed of the bearing. An accelerometer and 

thermocouple were also attached to the bearing to monitor the vibration and 

temperature respectively and their locations shown in Fig. 3.  The accelerometer was 

positioned to measure horizontal vibration of the bearing and housing and the 

thermocouple was positioned to measure the temperature of outer raceway of the 

bearing close to the position of the ultrasonic transducer. 

4.  Results and Discussion  

4.1 Reflection coefficient profile and thickness profile measurement 

The failure of rolling element bearings is frequently associated with lubrication 

failure, ingress of water, or contamination by hard particles. These processes result in 



an inadequate separation of the rolling elements and raceways leading to wear, contact 

fatigue, and surface damage.  In order to replicate these failure mechanisms in the 

laboratory three contaminant materials (acetone, water and sand) were added to the oil 

in order to initiate rapid failure of the ball bearing. These three contaminants were 

chosen as it was anticipated that they would result in different failure scenarios.  

Acetone dissolves in the lubricant and reduces it viscosity.  It also acts to flush out the 

oil from the bearing.  Water does not dissolve in the oil but causes rapid corrosion of 

the bearing parts as well as reducing the apparent viscosity of the oil.  It also acts to 

flush out the oil from the bearing.  Sand directly damages the bearing surfaces through 

abrasion.  Particle diameters of 50 m were used to ensure that they were greater than 

the size of the lubricant film to increase their wear properties.  

Figure 4(a) shows an experimentally measured reflection coefficient profile for a shaft 

speed of 506 rpm and a bearing radial load of 15 kN before any contaminant materials 

were added to the lubricant. Reflected signals were recorded at a rate of 20 kHz as the 

ball passed the transducer location. It can be seen that the reflection coefficient falls to 

a minimum at the centre of the lubricated contact region and then rises again.  This 

minimum refection coefficient corresponds to an oil film thickness of 0.75 µm. Also 

shown in Fig. 4(a) is the theoretical reflection coefficient distribution (using Eq. (8) to 

obtain thickness, then Eq. (1) to calculate the reflection coefficient). Note, that for the 

theoretical line the central film thickness has been assumed to occur across the whole 

of the contact (i.e. the minimum film thickness at the exit constriction of the contact is 

not modelled). Figure 4(b) shows an experimentally measured thickness profile and 

theoretical thickness profile corresponding to the reflection coefficient profile shown 

in Fig. 4(a). Comparing the two curves in Fig. 4(a) and two curves in Fig. 4(b), it can 

be seen that there is a good quantitative agreement at the centre of the lubricated 



contact and poor agreement elsewhere.  This is due to two distinct effects.  Firstly 

there will be errors in the theoretical line due to the assumption of constant lubricant 

thickness.  Secondly there are errors in the experimental line due to the averaging 

effect of the finite focal spot size of the ultrasonic beam (see [14] for fuller details).  

Note that both errors are minimised in the central region.  

With the current experimental system it takes approximately 1 minute to collect and 

process the data from each ball.  As each of the 14 balls can be measured by adjusting 

the delay between the optical trigger and the ultrasonic pulsing, so it takes 14 minutes 

to cycle though all balls within the bearing.  

4.2 Monitoring the failure process  

In order to compare the effect of different contaminants on the lubricant-layer, an 

identical procedure was used for each test.  In this procedure, contaminant materials 

were added to the lubricant feed after 3 monitoring cycles (i.e. after 42 minutes of 

normal operation).  The contaminated oil was added at a rate of 5-10ml/min. The 

acetone and water were used as the contaminated oil and the proportion of sand in the 

lubricant-oil was 0.1-0.2g/ml.  In each case, the experiment finished when the ball 

bearing seized. Figs. 5(a)-(c) show the centre reflection coefficient as a function of 

time for the three different failure cases. From Figs. 5(a)-(c), it can be seen that in the 

first 42 minutes, there is only small variation of the reflection coefficient.  This 

variation represents the measurement ‘noise’ and corresponds to a 4% variation in the 

amplitude of the centre reflection.   

When acetone was added to the lubricant, it can be seen from Fig. 5(a) that the 

reflection coefficient first decreases (from an average of 0.18 to 0.14 shown as 

gradual film reduction regime) then steeply increases after 69 minutes (shown as total 



film collapse regime).  The bearing seized after 84 minutes, which was the shortest of 

the three contaminant cases.  The failure scenario is as follows. Firstly, the acetone 

dissolves the lubricant, which lowers its viscosity and hence reduces the lubricant film 

thickness resulting in an immediate decrease in the reflection coefficient.  Secondly, 

over the next 12 minutes it is thought that the acetone and lubricant evaporate causing 

a lack of lubrication of the bearing to occur.  Contact of the bearing surfaces would 

then result in a high wear rate and a roughening of the ball and raceway surfaces.  

Roughening of the bearing surfaces can be seen by comparing photographs of the 

surface of the outer raceway before (Fig. 6(a)) and after (Fig. 6(b)) contamination by 

acetone. This increased roughness and starved lubrication caused the ultrasonic wave 

to be mostly reflected from the interface, hence the observed dramatic increase in 

reflection coefficient [20].  

When water was added to the lubricant, it can be seen from Fig. 5(b) that, as in the 

acetone case, the reflection coefficient initially decreases, followed by a series of 

sharp reflection coefficient peaks, starting after 42 minutes.  The initial reduction in 

reflection coefficient is slightly more marked than for acetone (average reflection 

coefficient falling from 0.17 to 0.07 shown as gradual film reduction regime).  It is 

likely that the water (since it is not piezo-viscous) will not enter the contact. However, 

some will dissolve in the oil reducing its viscosity and the water may also act to 

displace lubricating oil from the contact inlet. Both these effects would cause a 

reduction in the film thickness and hence a reduction in the reflection coefficient. The 

reflection coefficient remains at this reduced value for 78 minutes (until the point 

marked as total film collapse).  With time the surfaces of the raceway and ball oxidise, 

leading to increased wear and damage (increased surface roughness).  This oxidation 

can be seen in Fig. 6(c).  The presence of oxidation products and the increased surface 



roughness acting together then cause the observed dramatic increases in the reflection 

coefficient.   

Figure 5(c) shows the effect of the addition of sand particles to the lubricant.  This 

causes a gradual increase in the reflection coefficient over the 125 minute duration of 

the test.  The sand particles roughen the contacting surfaces; the roughness changes 

from Ra=0.02µm to Ra=0.14µm. Figure 6(d) shows a photograph of the bearing 

surface after the addition of sand to the bearing. It appears that this roughening of the 

surface has led to a slight increase in the measured film thickness. The reflection 

coefficient is sensitive to the separation of the mean lines of the two rough surfaces. 

With the increased roughness and the possibility of micro-elastohydrodynamic 

lubrication at the asperity contacts, the measured film thickness and hence reflection 

coefficient increases marginally. The sand abrasion also caused on increase in the 

radii of the contact elements and hence a decrease in the contact pressure (Eq. (5)). 

The film-thickness therefore increases slightly, and reflection coefficient also 

increases. 

It is now instructive to compare the ultrasonic results shown in Fig. 5(a)-(c) with more 

conventional condition monitoring approaches of temperature and vibration sensing.  

Figure 7 shows the variation in temperature as a function of time for the same three 

failure cases.   It can be seen that the temperature increases gradually for all 

contaminant cases and for normal operation.  The most marked change is for the 

addition of acetone and that can be seen to result in a significant change in the 

gradient of temperature increase.  This is in agreement with the hypothesis that the 

evaporation of the acetone caused the bearing to be starved of lubricant and hence 

significant heating though solid-solid contact resulted.  The acetone also resulted in 



the most rapid seizure of the bearing.  The addition of water causes a small initial 

effect (a reduction in temperature) followed by a similar gradient to that seen before 

its addition.  However, after 92 minutes the temperature starts to increase more 

rapidly.  This coincides with the observed dramatic increase in reflection coefficient 

seen in Fig. 5(b).  From Fig. 7 it can be seen that the addition of sand caused a small 

increase in the gradient of temperature increase.  It can also be seen that the gradient 

further increases after 90 minutes, presumably due to an increased rate of wear prior 

to failure.  

Figure 8 shows typical vibration signals before and after the addition of sand to the 

lubricant from which a significant increase in vibration amplitude is clear.  Figure 9 

shows the vibration measurements for the three tests.  From Fig. 9(a) it can be seen 

that the maximum vibration level increases after the addition of all three 

contaminants.  Although this may be useful in some circumstances this measure is not 

very discriminating.  Figure 9(b) shows the standard deviation of the vibration 

measurements.  From this figure it can be seen that, as expected, the addition of sand 

causes the most clear increase in vibration.  The addition of acetone also results in 

significant vibration, probably due to the high speed of the failure commented on 

earlier.   The effect of the addition of water is the smallest of the three cases.  

The results of Figs. 5(a)-(c) are presented as reflection coefficients. It is possible to 

convert this to oil film thickness provided the bulk modulus of the oil in the contact is 

known. Values for the bulk modulus have been determined for the uncontaminated 

lubricant (i.e. up to 42 minutes in Figs. 5(a)-(c)) and this corresponds to an oil film 

thickness of 0.75 m.  As soon as the contaminant is added the bulk modulus changes 



to an unknown value and so, for the purposes of this study, the data has been left as 

reflection coefficients. 

In both cases of liquid contamination the trend in reflection coefficient is the same. 

Immediately after the contaminant is introduced it falls. This corresponds to the 

sudden reduction in oil film thickness as the lower viscosity lubricant is entrained into 

the contact. After a short period of time the reflection coefficient rises to unity. For 

the acetone, this corresponds to the complete absence of an oil film and so the 

ultrasonic pulses are now reflected from a steel-air interface.  For the water the 

combination of increased surface roughness and the presence of oxidation products is 

thought to result in a similar increase in reflection coefficient.  

Thus measurements of ultrasonic reflection coefficient can therefore be used in two 

ways. Firstly they can be used to monitor a gradual reduction in oil film. This might 

occur, for example, if the lubricant supply degrades with time. This provides an early 

warning that indicates corrective measures need to be taken at, say, the next 

maintenance shut down. Secondly, if the reflection coefficient rapidly increases to one 

this indicates that there has been a sudden film collapse. Complete bearing failure by 

seizure is then likely and immediate action needs to be taken. 

5.  Conclusions 

Usually lubricant film and machine element failure is observed by monitoring the 

effects of the failure through temperature, vibration, and acoustic emission 

measurement. In this paper the measurement of ultrasonic reflection coefficient has 

been presented as an alternative.  This technique has been shown to be sensitive to the 

thickness and bulk modulus of the lubricant film.  In this way it is possible to 

characterise the lubricant film directly.  Potentially this can be used to indicate the 



onset of failure before surface damage occurs. Ultrasonic reflection coefficient 

measurements have been used to monitor the lubricant film failure in a rotating 

element ball bearing (type 6016). The monitoring system allowed reflection 

coefficient distribution to be measured alongside vibration and temperature.  For 

known operating conditions an accurate reflection coefficient was obtained from the 

centre of the lubricated contact. Three contaminant materials (acetone, water, sand) 

were separately added to the lubricant to initiate failure of the bearing.  These 

contaminants simulated common failure mechanisms that can occur in the field.  

Ultrasonic reflection coefficient, vibration and temperature were recorded under these 

three failure scenarios.  The ultrasonic reflection coefficient measurements were 

shown to provide useful diagnostic information on the failures, as well as an early 

warning signal.  When used in conjunction with vibration and/or temperature an 

enhanced approach to on-line bearing degradation analysis and future life prediction is 

possible.  The performance of the experimental system demonstrates that this 

technique has the potential for on-line condition monitoring of lubricant films in 

industrial applications.  
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Fig. 1. Geometry of the lubricated ‘contact’ region of the ball bearing and the region 

of focus of the 50 MHz ultrasonic transducer. 
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Fig. 2. Schematic diagram of the experimental apparatus made up of four 6016 ball 

bearings. 
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Fig. 3. Transducer attachment and bearing geometry. 
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Fig. 4. Shaft speed of 506 rpm and a radial load of 15 kN.  (a) measured reflection 

compared with a theoretical prediction based on a predicted oil film thickness. (b) 

measured lubricant thickness compared with a theoretical thickness.  
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Fig. 5. Reflection coefficient versus time for failure by the addition of, (a) acetone, (b) 

water and (c) sand. 
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Fig. 6. Photograph for a small contacting area at outer-raceway surface for different 

ball bearings (2.5 mm1.9 mm of the surface is shown). (a) undamaged surface, (b) 

after contamination by acetone, (c) after contamination by water and (d) after 

contamination by sand. 
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Fig. 7. Temperature versus time for a ball bearing under normal operation (labelled 

‘normal’) and various failure cases.  
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Fig. 8. Vibration signals before and after failure for sand case.  



0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 ∙∙∙∙∙∙∙∙∙ Acetone 

  Water 

M
ax
im

u
m
 a
m
p
lit
u
d
e 
(V
) 

Time (min) 

Figure 9(a).  
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Figure 9(b).  

 



Fig. 9. Vibration signals versus time for various failure cases, (a) maximum amplitude 

and (b) standard derivation. 



Tables 

Table 1. Acoustic properties of Shell T68 lubricating oil, steel and air. 

 Density 

 (kg/m3) 

Longitudinal wave 
velocity 

c (m/s) 

Bulk modulus 

B (GPa) 

Oil at 0.1 MPa 876 1460 1.84 

Oil at 0.8 GPa 1002 3550 12.6 

Oil at 1.5 GPa 1044 4500 21.2 

Steel (EN24) 7900 5900 172 

Air (20C) 1.3 330 1.42e-4 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

Table 2. Parameters required to calculate the theoretical lubricant-film thickness via 

the Dowson & Higginson equation [2,17]. 

Reduced 
modulus 

E (GPa) 

Reduced 
radius 

R (m) 

Pressure viscosity 
coefficient 

 (GPa-1) 

Ellipticity 
parameter 

k 

Simplified Elliptical 
Integrals 

 

Effective 
viscosity 

0 (N/m2s) 

228 5.85e-3 20 11.5 3.8 0.2 
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