5 research outputs found

    Genomic Insight and Optimization of Astaxanthin Production from a New <i>Rhodotorula</i> sp. CP72-2

    No full text
    Astaxanthin is a carotenoid pigment extensively used in various industries. Rhodotorula sp. CP72-2, isolated from Calotropis gigantea, showed potential astaxanthin production. In this study, strain CP72-2 was identified as a putative new species in the genus Rhodotorula based on the 26S rRNA gene sequence (98% identity). It was first used as the microbial source for producing astaxanthin. Strain CP72-2 was screened for its astaxanthin production and was identified and quantified by High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and UV-Vis spectrophotometer. After a screening of astaxanthin production, various carbon sources, pH, temperature, and incubation period were evaluated for their effect on the astaxanthin production of strain CP72-2. Among the several experimental factors, the most efficient conditions for astaxanthin production were glucose (50 g/L), pH 4.5, 25 °C, and three days of cultivation. The assembly genome of strain CP72-2 has a total length of 21,358,924 bp and a GC content of 64.90%. The putative candidate astaxanthin biosynthesis-associated genes (i.e., CrtE, CrtYB, CrtI, CrtS, CrtR, CrtW, CrtO, and CrtZ) were found. This research presents the first report on the production and optimization of astaxanthin from strain CP72-2 and its genome analysis, focusing on the biotechnological potential of the astaxanthin producer

    Diversity, astaxanthin production, and genomic analysis of Rhodotorula paludigena SP9-15

    No full text
    Astaxanthin is a carotenoid known for its powerful antioxidant properties. This study focused on isolating yeast strains capable of producing astaxanthin from flower and fruit samples collected in Thailand. Out of 115 isolates, 11 strains were identified that produced astaxanthin. Molecular identification techniques revealed that these isolates belonged to two species: Rhodotorula paludigena (5 isolates) and Rhodosporidiobolus ruineniae (6 isolates). Whole-genome analysis of one representative strain, R. paludigena SP9-15, identified putative candidate astaxanthin synthesis-associated genes, such as CrtE, CrtYB, CrtI, CrtS, CrtR, CrtW, CrtO, and CrtZ. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) confirmed astaxanthin production. Further optimization of astaxanthin production was carried out by investigating the effects of various factors on the growth rate and astaxanthin production. The optimal conditions were 40 g/L glucose as a carbon source, pH 7.5, and cultivation at 25 °C with 200 rpm for 3 days. Under these conditions, R. paludigena SP9-15 synthesized biomass of 11.771 ± 0.003 g/L, resulting in astaxanthin with a content of 0.558 ± 0.018 mg/g DCW (dry cell weight), an astaxanthin yield of 6.565 ± 0.238 mg/L, and astaxanthin productivity of 2.188 ± 0.069 g/L/day. These findings provide insights into astaxanthin production using red yeast strains from Thailand and highlight the potential of R. paludigena SP9-15 for further application

    Sustainable environmental management and related biofuel technologies

    No full text
    corecore