14 research outputs found

    Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite, Gyrodactylus bullatarudis

    Get PDF
    Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite, Gyrodactylus bullatarudis, infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analyzing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are likely important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the notion that recombination between divergent genomes can result in particularly successful parasites

    General Anesthetics Predicted to Block the GLIC Pore with Micromolar Affinity

    Get PDF
    Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    Get PDF
    All data are available on the ENCODE data portal: www.encodeproject. org. All code is available on GitHub from the links provided in the methods section. Code related to the Registry of cCREs can be found at https:// github.com/weng-lab/ENCODE-cCREs. Code related to SCREEN can be found at https://github.com/weng-lab/SCREEN.© The Author(s) 2020. The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.This work was supported by grants from the NIH under U01HG007019, U01HG007033, U01HG007036, U01HG007037, U41HG006992, U41HG006993, U41HG006994, U41HG006995, U41HG006996, U41HG006997, U41HG006998, U41HG006999, U41HG007000, U41HG007001, U41HG007002, U41HG007003, U54HG006991, U54HG006997, U54HG006998, U54HG007004, U54HG007005, U54HG007010 and UM1HG009442

    Adverse effects of topical corticosteroids in paediatric eczema: Australasian consensus statement

    No full text
    Atopic eczema is a chronic inflammatory disease affecting about 30% of Australian and New Zealand children. Severe eczema costs over AUD 6000/year per child in direct medical, hospital and treatment costs as well as time off work for caregivers and untold distress for the family unit. In addition, it has a negative impact on a child's sleep, education, development and self-esteem. The treatment of atopic eczema is complex and multifaceted but a core component of therapy is to manage the inflammation with topical corticosteroids (TCS). Despite this, TCS are often underutilised by many parents due to corticosteroid phobia and unfounded concerns about their adverse effects. This has led to extended and unnecessary exacerbations of eczema for children. Contrary to popular perceptions, (TCS) use in paediatric eczema does not cause atrophy, hypopigmentation, hypertrichosis, osteoporosis, purpura or telangiectasia when used appropriately as per guidelines. In rare cases, prolonged and excessive use of potent TCS has contributed to striae, short-term hypothalamic-pituitary-adrenal axis alteration and ophthalmological disease. TCS use can also exacerbate periorificial rosacea. TCS are very effective treatments for eczema. When they are used to treat active eczema and stopped once the active inflammation has resolved, adverse effects are minimal. TCS should be the cornerstone treatment of atopic eczema in children

    A Randomized, Controlled Trial of Oral Propranolol in Infantile Hemangioma

    No full text
    International audienceBACKGROUND: Oral propranolol has been used to treat complicated infantile hemangiomas, although data from randomized, controlled trials to inform its use are limited. METHODS: We performed a multicenter, randomized, double-blind, adaptive, phase 2-3 trial assessing the efficacy and safety of a pediatric-specific oral propranolol solution in infants 1 to 5 months of age with proliferating infantile hemangioma requiring systemic therapy. Infants were randomly assigned to receive placebo or one of four propranolol regimens (1 or 3 mg of propranolol base per kilogram of body weight per day for 3 or 6 months). A preplanned interim analysis was conducted to identify the regimen to study for the final efficacy analysis. The primary end point was success (complete or nearly complete resolution of the target hemangioma) or failure of trial treatment at week 24, as assessed by independent, centralized, blinded evaluations of standardized photographs. RESULTS: Of 460 infants who underwent randomization, 456 received treatment. On the basis of an interim analysis of the first 188 patients who completed 24 weeks of trial treatment, the regimen of 3 mg of propranolol per kilogram per day for 6 months was selected for the final efficacy analysis. The frequency of successful treatment was higher with this regimen than with placebo (60% vs. 4%, P<0.001). A total of 88% of patients who received the selected propranolol regimen showed improvement by week 5, versus 5% of patients who received placebo. A total of 10% of patients in whom treatment with propranolol was successful required systemic retreatment during follow-up. Known adverse events associated with propranolol (hypoglycemia, hypotension, bradycardia, and bronchospasm) occurred infrequently, with no significant difference in frequency between the placebo group and the groups receiving propranolol. CONCLUSIONS: This trial showed that propranolol was effective at a dose of 3 mg per kilogram per day for 6 months in the treatment of infantile hemangioma. (Funded by Pierre Fabre Dermatologie; ClinicalTrials.gov number, NCT01056341.)

    Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes

    Get PDF
    Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals. These sites preferentially flank transcription factor–encoding genes, often associated with human diseases, and function as enhancer blockers in vivo, suggesting that they act as evolutionarily invariant gene boundaries. We then applied this concept to predict and functionally demonstrate that the polymorphic variants associated with multiple sclerosis located within the EVI5 gene impinge on the adjacent gene GFI1.This research was supported by the following grants: BFU2007-60042/BMC, BFU2010-14839, Petri PET2007_0158, CONSOLIDER CSD2007-00008 (Spanish Ministerio de Ciencia e Innovación (MICINN)) and Proyecto de Excelencia CVI-3488 (Junta de Andalucía) to J.L.G.-S.; BFU2009-07044 (MICINN) and Proyecto de Excelencia CVI 2658 (Junta de Andalucía) to F.C.; FIS PI081636 (ISCIII) to F.M.; PN-SAF2009-11491 (MICINN) and Proyecto de Excelencia P07-CVI-02551 (Junta de Andalucía) to A.A.; BFU2008-00838, CONSOLIDER CSD2007-00008 (MICINN), Regional Government of Madrid (CAM S-SAL-0190-2006) and the Pro-CNIC Foundation to M.M.; BFU2006-12185 and BIO2009-12697 (MICINN) to L.M.; Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN209403, IN214407 and IN203811) and Consejo Nacional de Ciencia y Tecnología, México (CONACyT: 42653-Q, 58767 and 128464) to F.R.-T.; Intramural Research Program of the US NCBI (NIH) to I.O. and BIO2006-03380, CONSOLIDER CSD2007-00050 (MICINN) and RETICS RD07/0067/0012 (Spanish MICINN) to R.G. L.M. thanks A. Fernández for technical assistance and L. Barrios for statistical analysis. F.R.-T. thanks G.G. Avendaño for technical assistance
    corecore