9,806 research outputs found
Autoinhibition of the formin Cappuccino in the absence of canonical autoinhibitory domains.
Formins are a conserved family of proteins known to enhance actin polymerization. Most formins are regulated by an intramolecular interaction. The Drosophila formin, Cappuccino (Capu), was believed to be an exception. Capu does not contain conserved autoinhibitory domains and can be regulated by a second protein, Spire. We report here that Capu is, in fact, autoinhibited. The N-terminal half of Capu (Capu-NT) potently inhibits nucleation and binding to the barbed end of elongating filaments by the C-terminal half of Capu (Capu-CT). Hydrodynamic analysis indicates that Capu-NT is a dimer, similar to the N-termini of other formins. These data, combined with those from circular dichroism, suggest, however, that it is structurally distinct from previously described formin inhibitory domains. Finally, we find that Capu-NT binds to a site within Capu-CT that overlaps with the Spire-binding site, the Capu-tail. We propose models for the interaction between Spire and Capu in light of the fact that Capu can be regulated by autoinhibition
Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5
We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption
line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies,
drawn from redshift surveys of the GOODS fields and the Extended Groth Strip,
fully sample the range in star formation rates (SFRs) occupied by the
star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7.
Using the Doppler shifts of the MgII and FeII absorption lines as tracers of
cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies.
HST/ACS imaging and our spectral analysis indicate that the outflow detection
rate depends primarily on galaxy orientation: winds are detected in ~89% of
galaxies having inclinations (i) <30 degrees (face-on), while the wind
detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined
with the comparatively weak dependence of the wind detection rate on intrinsic
galaxy properties, this suggests that biconical outflows are ubiquitous in
normal, star-forming galaxies at z~0.5. We find that the wind velocity is
correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent
width of the flow is correlated with host galaxy SFR at 3.5-sigma significance,
suggesting that hosts with higher SFR may launch more material into outflows
and/or generate a larger velocity spread for the absorbing clouds. Assuming
that the gas is launched into dark matter halos with simple, isothermal density
profiles, the wind velocities measured for the bulk of the cool material
(~200-400 km/s) are sufficient to enable escape from the halo potentials only
for the lowest-M_* systems in the sample. However, the outflows typically carry
sufficient energy to reach distances of >50 kpc, and may therefore be a viable
source of cool material for the massive circumgalactic medium observed around
bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses
emulateapj forma
Impulse Framework for Unsteady Flows Reveals Superdiffusive Bed Load Transport
Sediment transport is an intrinsically stochastic process, and measurement of bed load in the environment is further complicated by the unsteady nature of river flooding. Here we present a methodology for analyzing sediment tracer data with unsteady forcing. We define a dimensionless impulse by integrating the cumulative excess shear velocity for the duration of measurement, normalized by grain size. We analyze the dispersion of a plume of cobble tracers in a very flashy stream over two years. The mean and variance of transport distance collapse onto well-defined linear and power-law relations, respectively, when plotted against cumulative dimensionless impulse. Data suggest that the asymptotic limit of bed load tracer dispersion is superdiffusive, in line with a broad class of geophysical flows exhibiting strong directional asymmetry (advection), thin-tailed step lengths and heavy-tailed waiting times. The impulse framework justifies the use of quasi-steady flow approximations for long-term river evolution modeling
Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain.
Overproduction of immunoglobulin light chains leads to systemic amyloidosis, a lethal disease characterized by the formation of amyloid fibrils in patients' tissues. Excess light chains are in equilibrium between dimers and less stable monomers which can undergo irreversible aggregation to the amyloid state. The dimers therefore must disassociate into monomers prior to forming amyloid fibrils. Here we identify ligands that inhibit amyloid formation by stabilizing the Mcg light chain variable domain dimer and shifting the equilibrium away from the amyloid-prone monomer
Non-market Valuation Biases Due to Aboriginal Cultural Characteristics in Northern Saskatchewan: The Values Structures Component
Current non-market valuation techniques have been developed based on assumptions about values held within the Eurocentred culture. Contentions between cultures over natural resources are hypothesized to occur because of differences in held values resulting in different values being assigned to the resources in question. This study measured the held values of an Aboriginal band in Northern Saskatchewan as the first dimension of a non-market valuation study of natural resources. These held value structures are presented noting differences by age and gender and in comparison with the local Non-Aboriginal community and another Aboriginal group in northern Alberta.Resource /Energy Economics and Policy,
The Halo and Rings of the Planetary Nebula NGC 40 in the Mid-Infrared
We present imaging and spectroscopy of NGC 40 acquired using the Spitzer
Space Telescope (Spitzer), and the Infrared Space observatory (ISO). These are
used to investigate the nature of emission from the central nebular shell, from
the nebular halo, and from the associated circumnebular rings. It is pointed
out that a variety of mechanisms may contribute to the mid-infrared (MIR)
fluxes, and there is evidence for a cool dust continuum, strong ionic
transitions, and appreciable emission by polycyclic aromatic hydrocarbons
(PAHs). Prior observations at shorter wavelengths also indicate the presence of
warmer grains, and the possible contribution of H2 transitions. It is suggested
that an apparent jet-like structure to the NE of the halo represents one of the
many emission spokes that permeate the shell. The spokes are likely to be
caused by the percolation of UV photons through a clumpy interior shell, whilst
the jet-like feature is enhanced due to locally elevated electron densities; a
result of interaction between NGC 40 and the interstellar medium. It is finally
noted that the presence of the PAH, 21 microns and 30 microns spectral features
testifies to appreciable C/O ratios within the main nebular shell. Such a
result is consistent with abundance determinations using collisionally excited
lines, but not with those determined using optical recombination linesComment: 13 pages, 8 figures, Accepted for publication in MNRAS. 37 pages in
arXi
Colorado Native Plant Society Newsletter, Vol. 5 No. 4, October-December 1981
https://epublications.regis.edu/aquilegia/1159/thumbnail.jp
Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes
The noise kernel is the vacuum expectation value of the (operator-valued)
stress-energy bi-tensor which describes the fluctuations of a quantum field in
curved spacetimes. It plays the role in stochastic semiclassical gravity based
on the Einstein-Langevin equation similar to the expectation value of the
stress-energy tensor in semiclassical gravity based on the semiclassical
Einstein equation. According to the stochastic gravity program, this two point
function (and by extension the higher order correlations in a hierarchy) of the
stress energy tensor possesses precious statistical mechanical information of
quantum fields in curved spacetime and, by the self-consistency required of
Einstein's equation, provides a probe into the coherence properties of the
gravity sector (as measured by the higher order correlation functions of
gravitons) and the quantum nature of spacetime. It reflects the low and medium
energy (referring to Planck energy as high energy) behavior of any viable
theory of quantum gravity, including string theory. It is also useful for
calculating quantum fluctuations of fields in modern theories of structure
formation and for backreaction problems in cosmological and black holes
spacetimes.
We discuss the properties of this bi-tensor with the method of
point-separation, and derive a regularized expression of the noise-kernel for a
scalar field in general curved spacetimes. One collorary of our finding is that
for a massless conformal field the trace of the noise kernel identically
vanishes. We outline how the general framework and results derived here can be
used for the calculation of noise kernels for Robertson-Walker and
Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
- …