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Impulse Framework for Unsteady Flows Reveals Superdiffusive Bed Load
Transport

Abstract
Sediment transport is an intrinsically stochastic process, and measurement of bed load in the environment is
further complicated by the unsteady nature of river flooding. Here we present a methodology for analyzing
sediment tracer data with unsteady forcing. We define a dimensionless impulse by integrating the cumulative
excess shear velocity for the duration of measurement, normalized by grain size. We analyze the dispersion of
a plume of cobble tracers in a very flashy stream over two years. The mean and variance of transport distance
collapse onto well-defined linear and power-law relations, respectively, when plotted against cumulative
dimensionless impulse. Data suggest that the asymptotic limit of bed load tracer dispersion is superdiffusive,
in line with a broad class of geophysical flows exhibiting strong directional asymmetry (advection), thin-tailed
step lengths and heavy-tailed waiting times. The impulse framework justifies the use of quasi-steady flow
approximations for long-term river evolution modeling.
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Impulse framework for unsteady flows reveals superdiffusive bed
load transport

Colin B. Phillips,1 Raleigh L. Martin,1 and Douglas J. Jerolmack1

Received 28 January 2013; revised 1 March 2013; accepted 4 March 2013; published 11 April 2013.

[1] Sediment transport is an intrinsically stochastic process,
and measurement of bed load in the environment is further
complicated by the unsteady nature of river flooding. Here
we present a methodology for analyzing sediment tracer
data with unsteady forcing. We define a dimensionless
impulse by integrating the cumulative excess shear velocity
for the duration of measurement, normalized by grain size.
We analyze the dispersion of a plume of cobble tracers in
a very flashy stream over two years. The mean and variance
of transport distance collapse onto well-defined linear and
power-law relations, respectively, when plotted against
cumulative dimensionless impulse. Data suggest that the
asymptotic limit of bed load tracer dispersion is
superdiffusive, in line with a broad class of geophysical
flows exhibiting strong directional asymmetry (advection),
thin-tailed step lengths and heavy-tailed waiting times. The
impulse framework justifies the use of quasi-steady flow
approximations for long-term river evolution modeling.
Citation: Phillips, C. B., R. L. Martin, and D. J. Jerolmack (2013),
Impulse framework for unsteady flows reveals superdiffusive bed load
transport, Geophys. Res. Lett., 40, 1328–1333, doi:10.1002/grl.50323.

1. Introduction

[2] Coarse-grained river cobbles spend only a small fraction
of their time in motion. Even when fluid stress is above the
threshold of motion, a cobble is predominantly at rest under
most bed load transport conditions. Sediment transport at the
particle scale can be described as a series of steps and rests,
whose respective lengths and durations may be determined
by theory or experiment [Einstein, 1937]. Recent particle
tracking experiments along these lines have suggested that
bed load particles are separated into mobile and immobile
populations, with an exchange rate among them determined
by transition probabilities [Ancey et al., 2008]. A momentum
balance approach at the grain and bulk scales has been
utilized to derive relations between fluid shear velocity and
particle step length, particle velocity, and number of mobile
particles [Charru et al., 2004; Lajeunesse et al., 2010].
Video particle tracking in both the field and the laboratory
has allowed the determination of tracer diffusion regimes
[Nikora et al., 2002] and the physical processes responsible
for particle dispersion [Martin et al., 2012]. Diffusive
regimes are commonly determined through scaling of the

diffusion exponent (g), which relates the variance in particle
displacement (s2) to time (t) such that s2 ~ tg [e.g., Metzler
and Klafter, 2000]. For g =1, diffusion is normal; for all other
values of g, diffusion is anomalous where for g< 1 processes
are subdiffusive; and for g> 1 processes are superdiffusive [e.
g., Metzler and Klafter, 2000]. Nikora et al. [2002] identified
three bed load scaling regimes: the local range of individual
ballistic particle trajectories, an intermediate range consisting
of many ballistic particle trajectories, and a global range
consisting of many intermediate particle trajectories. Martin
et al. [2012] showed that dispersion in the local regime is bal-
listic due to correlated particle motions and that heavy-tailed
particle waiting times caused by burial and scour under low-
stage transport could possibly explain anomalous diffusion
in the global regime. In the global range both subdiffusion
and superdiffusion have been reported [Nikora et al., 2002;
Bradley et al., 2010].
[3] Due to the limited length of laboratory experiments

and the demand to understand bed load in natural systems,
particle tracking in the field has become an attractive
approach. Sediment tagged with Radio Frequency Identifica-
tion Passive Integrated Transponders (RFID PIT) allows
the tracking of individual particles at long timescales.
This tracking method has been used in rivers to determine
particle vertical mixing rates, bed and bed form mobility,
virtual velocity, sand and gravel dispersion, and gravel
step lengths and rest durations as well as the effects of
alluviation and topography on these parameters [e.g.,
Habersack, 2001; Nikora et al., 2002; Ferguson et
al., 2002; Haschenburger and Wilcock, 2003; Bradley et
al., 2010; Bradley and Tucker, 2012; Hodge et al., 2011;
Hassan et al., 2013]. At the flood and multi-flood scale, sed-
iment tracer data represent a cumulative measure of individ-
ual particle path lengths (global regime of Nikora et al.
[2002]). Given the difficulties of unsteady forcing in a single
flood and a series of floods (Figure 1a), a framework incor-
porating an unsteady flow is essential. Inspired by the
impulse framework introduced by Diplas et al. [2008] to
account for turbulence, we develop a nondimensional
impulse to characterize macroscopic variations in fluid stress
due to an unsteady hydrograph. We then apply this frame-
work to a new bed load tracer study and demonstrate that
the data collapse onto physically meaningful curves of travel
distance and dispersion.

2. Impulse Framework

[4] Particles resting on a stream bed require a stress above
a threshold value to begin moving [e.g., Buffington and
Montgomery, 1997]. Laboratory experiments have established
that once a sediment particle is pried free of the bed it exhibits a
velocity and step length linearly proportional to excess shear
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velocity (U*�U*c), where U* [m/s] is the shear velocity and
U*c is the threshold shear velocity for initiation of motion
[Francis, 1973; Fernandez Luque and Van Beek, 1976;
Lajeunesse et al., 2010; see Table 3 in Martin et al., 2012].
The duration of motion for a particle during a flood is
unknown; however, it seems clear based on the arguments
above that particle displacement should be proportional to the
product of (i) the velocity of the particle when in motion and
(ii) the duration of flow in excess of the threshold of motion.
This can be encoded in a cumulative dimensionless impulse,
I*, that is a kind of transport length:

I� ¼
Z tf

ts

U� � U�cð Þdt=D50; U� > U�c; (1)

where ts and tf are the starting and finishing times of
the considered hydrograph record, andD50 is the median grain
size of the stream. We consider only flows in excess of U*c

in (1), which truncates the frequency-magnitude distribution
of U* by excluding all subthreshold flows (which are irrele-
vant for transport) present in the hydrograph(Figure 1b). This
removes the effect of flood recurrence intervals—which are
determined by regional climate—and only considers sediment
transport as a function of excess momentum imparted on the
grains. Our treatment assumes a constant U*c and thus ignores

potential variations (temporal and spatial) in the threshold of
motion; however, these could be incorporated in the future.
For our field study U*c is empirically determined from tracer
particles (see section 3), but a first approximation could be
derived from the Shields curve. In the following paragraphs
we demonstrate the utility of this dimensionless impulse frame-
work with a field dataset of tracer particles.

3. Field Study

[5] The field tracer experiment was performed in
the Mameyes River in the Luquillo Critical Zone Observatory
in North East Puerto Rico. The Mameyes River is nestled in
the heart of the Luquillo Mountains, which have a strong oro-
graphic effect resulting in greater than 4000mm/yr of precipi-
tation. Precipitation occurs as short-duration, high-magnitude
events which result in frequent flash flooding [Schellekens et
al., 2004]. The study reach is a cobble-bedded, 1.2 km stretch
of the Mameyes River just downstream of its exit from the
mountains; it exhibits nearly uniform width (20m), minimal
meandering, and a slope of S=7.8� 10�3. The slope repre-
sents a linear regression of the channel longitudinal profile
extracted from a lidar digital elevation model (DEM) (1m hor-
izontal and vertical resolution). Stage (h) was recorded every
5min at the site for 40 days by an In-Situ Level Troll 500
and correlated to measurements from a U.S. Geological Sur-
vey (USGS) gage 3.5 km upstream (15min resolution) to ob-
tain a stage record for the duration of study.
[6] For the study reach U* = (ghS)

1/2 was estimated
assuming steady and uniform flow, where g is acceleration
due to gravity; Shields stress, t� ¼ U2

� = RgD50ð Þ, was also
estimated for comparison to other studies, where R= 1.65
is the submerged specific gravity of the tracers. We do not
attempt to justify the normal flow approximation physically,
although channel geometry is remarkably consistent along
the study reach; rather, it is a convenient simplification that
will be assessed a posteriori. We computed the I* (1) for
each flood, over the 2 year study period (Figure 1a). We also
examined the frequency-magnitude distribution of shear
velocity values in excess of critical (U*>U*c), finding
an exponential distribution (Figure 1b); a similar result
was obtained when all 20 years of stage data were
used. This implies that there is a well-defined average or
“characteristic” shear velocity associated with floods; we
return to the implications of this finding below.
[7] RFID PIT tags with unique numbers were installed in

300 cobbles in two separate populations of 150 cobbles
placed in the stream, in a 20 � 20m grid with 1m spacing
spanning the channel, in the summers of 2010 and 2011.
Tracer particle positions were surveyed two, three, and one
time(s) in the summers of 2010, 2011, and 2012, respectively
(Figures 2a–2c respectively). Positions were transformed from
Cartesian coordinates to a stream-wise normal coordinate
system following a methodology similar to Legleiter and
Kyriakidis [2007]. Total tracer recovery percentages for all
six surveys for population one were 62%, 92.5%, 86.6%,
88%, 86.6%, and 93%. Tracer recovery for all three surveys
for population two were 100%, 99%, and 94.6%. The low
recovery of the initial survey of population one was due to
limited sampling time between flooding events. Tracer particle
populations were selected from the stream bed to have narrow
grain size distributions in order to promote equal mobility
[Wiberg and Smith, 1987] among the tracers (Figure 2a inset).

(a)

(b)

Figure 1. (a) Hydrograph in stage (m) for the Mameyes
River for the duration of the field study. The dashed red line
represents the empirically determined threshold of motion
U*c = 0.22m/s (Shields stress of 0.023). The inset is of a
single flood with the shaded region representing the flood
impulse (see text section 2). (b) Distribution of shear velocity
greater than the critical shear velocity.
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The median grain size values for the stream and tracer
populations one and two were 12, 12, and 13 cm, respectively.
The stream D50 represents the average of three pebble
counts [Wolman, 1954]. During transport, tracers were fully
submerged (average h/D50 = 7.0). Tracer particles were
located with two wands manufactured by Oregon RFID with
maximum detection radii of 50 cm and 20 cm. Survey and
detection error were set at 45 cm and 1m for the small and
large wands, respectively, which is 1.5 times the calculated
combined survey and detection error. RFID tags are detect-
able at burial depths up to 50 cm and 10–20 cm, depending
on tag orientation, for the large and small wands, respectively.

4. Results and Analysis

[8] Several individual floods were surveyed in the summers
of 2010 and 2011 and were used to calculate the distributions
of particle travel length and also the fraction of mobile
particles, f. For single floods each tracer’s transport distance
(Xi) was normalized by its median diameter (Di) (Figure 3a),
such that Xi/Di represents the dimensionless transport distance
of an individual tracer. Displacement distances of tracers for
each flood are well characterized by an exponential distribu-
tion (Figure 3a). Typical distances of individual tracers were
a few meters for a given flood, implying very intermittent
(rather than continuous) transport.
[9] We anticipate a linear relation between the peak flood

Shields stress and the mobile fraction (i.e., f~ t*) based on
momentum balance [Lajeunesse et al., 2010] and determined

U*c from the intercept of this fit (Figure 3a inset). We esti-
mated t*c = 0.023, or U*c = 0.22m/s, for the tracer D50.
Note that f< 1 for all floods, implying that continuous

(a)

(b)

(c)

Figure 2. (a) Location of tracer particle initial placement on
lidar DEM of the study area in May of 2010. The inset shows
the cumulative grain size distributions for the stream (black
line), and tracer population one and two (red and dashed red
lines respectively). (b) Location of tracer particles in summer
2011. (c) Location of tracer particles in summer 2012.

(c)

(b)

(a)

Figure 3. (a) Dimensionless step length distributions for
individual floods normalized by the mean (<X/D>) step
length for each flood. Dimensionless mean step lengths for
each flood are labeled in the legend. The dashed black line
represents an exponential distribution. The inset represents
the fraction of tracers that moved against the peak Shields
stress for each flood. Symbols and colors correspond to the
same datasets for both the inset and Figure 3a. (b) Scaling
of the mean dimensionless tracer transport distance against
dimensionless impulse; the solid black line represents a linear
fit through the origin. (c). Scaling of the variance with dimen-
sionless impulse; the solid black line represents the best-fit
relationship. The inset shows the equivalence between the
dimensionless impulse, and the dimensionless time similar
to Nikora et al. [2002].
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bed load transport did not occur for even the largest events;
this is consistent with the inference of intermittent transport
from travel distances.
[10] We determined scaling of the mean (<X/D>) and

variance (s2 =<(Xi/Di�<X/D>)2>) of dimensionless
tracer transport distances as a function of I*. Following
the reasoning of section 2 we anticipate a linear relation-
ship between I* and <X/D>. Here the < > symbols repre-
sent the ensemble average over all particles. When
interpreting fitting exponents of the mean and variance,
we make the assumption that tracer displacement has
reached the asymptotic limit; i.e., transport is not in a tran-
sient regime. Due to the limited number of sampling inter-
vals, we utilized all permutations of tracer surveys. Values
for <X/D> collapse onto a reasonably linear relation
when plotted against I* (Figure 3b). The fitted equation in
Figure 3b represents the ratio of the mean values of I*
and <X/D>. We also find data collapse of the variance
onto a power-law relationship when plotted against I* (Fig-
ure 3c). There is no systematic trend for <X/D> and the
variance when plotted against real (clock) time. We note
that the values of I* in Figures 3b and 3c are sensitive to
the value of U*c, but that the form of the scaling relation-
ships are robust.
[11] The linear form of Figure 3b implies a constant mean

tracer virtual velocity. This suggests that at long timescales
cumulative impulse is proportional to (and dominated by)
the duration of time above threshold, i.e., I* ~ t, where t rep-
resents the total time above the threshold of motion. Indeed,
we recover nearly identical scaling (as in Figures 3b and 3c)
when the I* is replaced by <U*�U*c> t /D50, because (see
Figure 3c inset) I*�hU*�U* cit/D50 for our study system,
where <U*�U*c> is the average value for the distribution
of U*>U*c (Figure 1b). The parameter<U*�U*c> t /D50

is similar to the dimensionless time used by Nikora et al.
[2002] for investigating bed load diffusion scaling. We
can now interpret the mean square displacement as
representing dispersion of tracers as a function of transport
time; the scaling exponent, g =1.88, (s2 ~ tg), indicates
superdiffusion.
[12] The tracer waiting time distribution is not directly

measurable, however, there is an expectation based on
experiments by Martin et al. [2012] for heavy-tailed waiting
times. In the case of symmetric random walks, thin-tailed
step lengths and heavy-tailed waiting times produce
subdiffusive behavior [e.g., Weeks et al., 1996; Metzler
and Klafter, 2000]. However, in the presence of a strong
asymmetry (drift), the same distributions can produce
superdiffusive scaling [Weeks et al., 1996]. In the case of a
river where steps occur in only one direction—i.e., down-
stream—long waiting times would appear as Levy flights
in the upstream direction when viewed from a Lagrangian
reference frame centered on <X/D> [Weeks et al., 1996].
Indeed, our <X/D> measurements support a constant
unidirectional drift (Figure 3b). Using the analytical frame-
work for asymmetric random walks [Weeks et al., 1996;
Weeks and Swinney, 1998] and the knowledge that particle
step lengths are thin tailed (exponential), we infer that
cobbles exhibit a power-law waiting time distribution with
an exponent n= 4� g = 2.12 for the probability density
function. It should be noted that this is the inferred waiting
time distribution during flows above threshold, and that the
time below threshold is not considered.

5. Discussion and Summary

[13] The novelty and utility of I* is that it allows the
coupling of hydrological and sediment tracer data well
beyond the single-flood scale, in a physically based manner.
For channels where the distribution of U*>U*c is thin tailed,
I* can also be viewed as a dimensionless time following the
reasoning of Nikora et al. [2002]. An assumption in this study
is that U*c is constant, which is not valid in some situations
[Kirchner et al., 1990; Charru et al., 2004; Marquis and
Roy, 2012]. This assumption is made out of necessity as there
is currently no feasible manner in which to determine U*c

for each flood. However, the collapse of the mean and
variance of tracer displacement data suggests that the range
of values forU*c cannot be large in this reach during the study
period. Our tracer recovery rates (excluding the first flood)
were consistently higher than other similar studies [Ferguson
et al., 2002; Haschenburger, 2011a; Liébault et al., 2012].
However, there is a potential for the scaling exponents g
and n to be biased by unrecovered tracers, which would likely
have traveled the farthest and hence have had significant
influence on calculated means and variances. It is possible
that tracers were destroyed or buried beyond the detection
limit, though the latter is unlikely as similar studies reported
fairly shallow burial depths for a large range of conditions
[Haschenburger, 2011b; Houbrechts et al., 2012]. However,
the missing tracers are likely to affect each survey in a similar
manner, in that increasing <X/D> and s2 would simply re-
scale the linear and power law relationships for<X/D>
and s2, respectively. We thus treat our scaling exponents
as estimates of their actual values. In the experiments of
Martin et al. [2012] the heavy-tailed waiting time distribution
was the result of the time it took to scour down to the depth of
the buried tracer. If the inferred heavy-tailed distribution
of tracer waiting times in this study is accurate, this lends
further support to the mobile and immobile partition [Ancey
et al., 2008] of sediment tracers, with a residence time in the
immobile phase that is controlled by erosion and deposition
of the bed [Martin et al., 2012].
[14] The similarity of cumulative impulse and<U*-U*c> t

implies that unsteadiness of the hydrograph may be further
simplified through use of an intermittency factor I= t /T,
where T is the total duration of elapsed (clock) time. The
time-integrated hydrograph then reduces to a form I<U*�
U*c> T, which is precisely the treatment used in long-term
modeling of river profiles [e.g., Paola et al., 1992; Parker
et al., 1998]. For floods exceeding critical shear velocity in
our period of study, <U*>= 0.27m/s (<t*>= 0.032) and
the ratio of < t*> / t*c = 1.39; this is close to the theoretically
predicted and measured bankfull flow values for bed load–
dominated alluvial streams at equilibrium, t*/t*c of 1.2 and
~1.4, respectively [Parker, 1978; Paola et al., 1992; Parker
et al., 1998]. Despite the (perhaps fortuitous) validation of
landscape modeling assumptions made by Paola et al.
[1992], this simplification is only valid at timescales
sufficiently longer than the recurrence interval of floods
and requires that the distribution of U*>U*c is well behaved
(i.e., that it is thin tailed). For the Mameyes River, the short
recurrence interval of floods exceeding critical shear veloc-
ity (~5 days) hastens this convergence. Nonetheless, it is re-
markable that the complex hydrograph (Figure 1a) may be
reduced to an average stress with an intermittency factor
and still describe the mean tracer displacement.
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[15] Anomalous diffusion of sediment tracers in the global
regime of Nikora et al. [2002] has been suggested by modeling
[Ganti et al., 2010] and field studies [Bradley et al., 2010;
Liébault et al., 2012], though usually due to heavy-tailed step
lengths. The existence of heavy-tailed step lengths in natural
tracer studies is still a matter of debate [Hassan et al., 2013].
In this tracer study we do not observe heavy-tailed step
lengths. It is possible that our selection of a narrow tracer
grain-size distribution precludes the emergence of heavy-
tailed step lengths observed in experiments by Hill et al.
[2010]. This interpretation is supported by the experimental
results of Roseberry et al. [2012], which show thin-tailed step
length distributions for nearly unimodal sediment under
steady flow. Our inferred heavy-tailed waiting times emerge
only when considering flows above the threshold of motion
and thus are unrelated to flood recurrence [Zhang et al.,
2012]. Nikora et al. [2002] suggested that heavy-tailed waiting
times would lead to subdiffusion in the global regime; how-
ever, because sediment tracers undergo asymmetric random
walks, the heavy-tailed waiting times produce superdiffusion.
Zhang et al. [2012] point out that at the longest timescales,
one should eventually observe normal diffusion because parti-
cle waiting times will not be infinitely long; however, in prac-
tice the waiting times of field tracers may be sufficiently long
that this “normal” scaling is never observed. At present, we
have no basis for estimating the maximum particle waiting
time in a river. An additional caveat is that our particles may
not have sampled sufficient space and time to reach the asymp-
totic scaling limit, and so caution should be applied when infer-
ring scaling exponents from these data. If results are taken at
face value, however, they suggest that bed load tracers behave
similarly to tracers in other geophysical flows [Weeks et al.,
1996] and also to charge carriers in amorphous materials
[Scher and Montroll, 1975], where heterogeneity leads to
long particle trapping times in the presence of strong drift.
Furthermore, the dimensionless impulse could act as a catalyst
for synthesizing existing bed load tracer datasets. Should the
results of our study be borne out in other rivers, we might
be emboldened to extrapolate bed load dynamics beyond tracer
observations using existing hydrologic gage data. If the
characteristic flood magnitude and intermittency of a given
river could be assumed reasonably constant, one could even
estimate bed load travel distances over geologic timescales.
This could provide one way to estimate the residence time of
cobbles in a river, if their provenance was known.
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