127 research outputs found

    Nurse Practitioner Knowledge and Use of Complementary and Alternative Therapies for the Management of Chronic Musculoskeletal Pain: A Pilot Study

    Get PDF
    Over prescription and misuse of opiates in the treatment of chronic musculoskeletal pain (CMP) in adults can result in patients becoming dependent on opiates for pain relief. In adjunct with current regulations on opiate prescribing practices, complementary and alternative medicine (CAM) practices should be incorporated into the plan of care. Nurse practitioners (NPs) are in an adequate position to educate their patients on CAM therapies to minimize their use of prescription opiates. However, they must be knowledgeable of CAM therapies in order to educate for their use. A descriptive survey was completed by fourteen (n = 14) NPs to determine their knowledge, beliefs, and attitudes pertaining to CAM and treatment and referral practices for those with CMP. Results indicate that NP knowledge of CAM is minimal and often learned through self-inquiry. Research findings suggest the need for NPs to be properly educated on the use of CAM in order to effectively implement them into the treatment plan for those with CMP and decrease the need for pharmacological relief (opioids)

    Infant behavioral reactivity predicts change in amygdala volume 12 years later

    Get PDF
    The current study examined the link between temperamental reactivity in infancy and amygdala development in middle childhood. A sample (n = 291) of four-month-old infants was assessed for infant temperament, and two groups were identified: those exhibiting negative reactivity (n = 116) and those exhibiting positive reactivity (n = 106). At 10 and 12 years of age structural imaging was completed on a subset of these participants (n = 75). Results indicate that, between 10 and 12 years of age, left amygdala volume increased more slowly in those with negative compared to positive reactive temperament. These results provide novel evidence linking early temperament to distinct patterns of brain development over middle childhood

    The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    Get PDF
    Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap

    Kepler-21b: A Rocky Planet Around a V = 8.25 Magnitude Star

    Get PDF
    HD 179070, aka Kepler-21, is a V = 8.25 F6IV star and the brightest exoplanet host discovered by Kepler. An early detailed analysis by Howell et al. (2012) of the first thirteen months (Q0 - Q5) of Kepler light curves revealed transits of a planetary companion, Kepler-21b, with a radius of about 1.60 ± 0.04 R⊕ and an orbital period of about 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2σ upper limit of 10 M⊕. Here we present results from the analysis of 82 new radial velocity observations of this system obtained with HARPS-N, together with the existing 14 HIRES data points. We detect the Doppler signal of Kepler-21b with a radial velocity semi-amplitude K = 2.00 ± 0.65 m s-1, which corresponds to a planetary mass of 5.1 ± 1.7 M⊕. We also measure an improved radius for the planet of 1.639 +0.019/-0.015 R⊕, in agreement with the radius reported by Howell et al. (2012). We conclude that Kepler-21b, with a density of 6.4 ± 2.1 g cm-3, belongs to the population of small, ≤6 M⊕ planets with iron and magnesium silicate interiors, which have lost the majority of their envelope volatiles via stellar winds or gravitational escape. The RV analysis presented in this paper serves as example of the type of analysis that will be necessary to confirm the masses of TESS small planet candidates.PostprintPeer reviewe

    Lying about the Valence of Affective Pictures: An fMRI Study

    Get PDF
    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception

    An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141

    Get PDF
    Ultra-short period (USP) planets are a class of low mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in-situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of an USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b we thus inferred a radius of 1.51±0.05 R1.51\pm0.05~R_\oplus and a mass of 5.08±0.41 M5.08\pm0.41~M_\oplus, consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV dataset, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of 0.30±0.060.30 \pm 0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at \sim3000K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.Comment: 16 pages, 10 figures., accepted for publication in A

    A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-Transiting Planet in the Kepler-20 System*

    Get PDF
    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ∼ 1.6 R⊕ has recently been proposed by several publications in the literature (Rogers 2015; Weiss& Marcy 2014). Kepler-20b (Rp ∼ 1.9 R⊕) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of Kepler-20 three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (M* = 0.948 ± 0.051 M☉ and R* = 0.964 ± 0.018 R☉).Kepler-20b is a 1.868+0.066 −0.034 R⊕ planet in a 3.7 day period with amass of 9.70+1.41 −1.44 M⊕ resulting in a mean density of 8.2 +1.5 −1.3 g cm−3 indicating a rocky composition with an iron to silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96+3.08 −3.61 M⊕ and an orbital period of ∼ 34 days in the gap between Kepler-20f (P ∼ 11 days) and Kepler-20d (P ∼78 days).PostprintPeer reviewe

    A pair of TESS planets spanning the radius valley around the nearby mid-M dwarf LTT 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V=13.07V=13.07, Ks=8.204K_s=8.204, RsR_s=0.374 R_{\odot}, MsM_s=0.401 M_{\odot}, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb=0.77P_b=0.77 days, Pc=12.25P_c=12.25 days and sizes rp,b=1.33±0.07r_{p,b}=1.33\pm 0.07 R_{\oplus}, rp,c=2.30±0.16r_{p,c}=2.30\pm 0.16 R_{\oplus}, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of mp,b=2.620.46+0.48m_{p,b}=2.62^{+0.48}_{-0.46} M_{\oplus} and mp,c=8.61.3+1.6m_{p,c}=8.6^{+1.6}_{-1.3} M_{\oplus}, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.Comment: Accepted to AJ. 8 figures, 6 tables. CSV file of the RV measurements (i.e. Table 2) are included in the source cod

    An Accurate Mass Determination for Kepler-1655b, a Moderately Irradiated World with a Significant Volatile Envelope

    Get PDF
    Funding: A.C.C. acknowledges support from STFC consolidated grant number ST/M001296/1. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant Agreement No. 313014 (ETAEARTH).We present the confirmation of a small, moderately-irradiated (F= 155±7 F⊕) Neptune with a substantial gas envelope in a P=11.8728787±0.0000085-day orbit about a quiet, Sun-like G0V star Kepler-1655. Based on our analysis of the Kepler light curve, we determined Kepler-1655b’s radius to be 2.213±0.082 R⊕. We acquired 95 high-resolution spectra with TNG/HARPS-N, enabling us to characterize the host star and determine an accurate mass for Kepler-1655b of 5.0±^3.1_2.8 M⊕ via Gaussian-process regression. Our mass determination excludes an Earth-like composition with 98% confidence. Kepler-1655b falls on the upper edge of the evaporation valley, in the relatively sparsely occupied transition region between rocky and gas-rich planets. It is therefore part of a population of planets that we should actively seek to characterize further.PostprintPeer reviewe

    K2-291b:A rocky super-Earth in a 2.2 day orbit

    Get PDF
    K2-291 (EPIC 247418783) is a solar-type star with a radius of R_star = 0.899 ±\pm 0.034 R_sun and mass of M_star=0.934 ±\pm 0.038 M_sun. From K2 C13 data, we found one super-Earth planet (R_p = 1.589+0.095-0.072 R_Earth) transiting this star on a short period orbit (P = 2.225177 +6.6e-5 -6.8e-5 days). We followed this system up with adaptive-optic imaging and spectroscopy to derive stellar parameters, search for stellar companions, and determine a planet mass. From our 75 radial velocity measurements using HIRES on Keck I and HARPS-N on Telescopio Nazionale Galileo, we constrained the mass of EPIC 247418783b to M_p = 6.49 ±\pm 1.16 M_Earth. We found it necessary to model correlated stellar activity radial velocity signals with a Gaussian process in order to more accurately model the effect of stellar noise on our data; the addition of the Gaussian process also improved the precision of this mass measurement. With a bulk density of 8.84+2.50-2.03 g cm-3, the planet is consistent with an Earth-like rock/iron composition and no substantial gaseous envelope. Such an envelope, if it existed in the past, was likely eroded away by photo-evaporation during the first billion years of the star's lifetime.Comment: Accepted to AJ, 15 pages, 8 figure
    corecore