2,375 research outputs found

    Advanced Solid-State Array Spectrometer (ASAS) data sets from the 1990 field season: A unique look at two forested ecosystems

    Get PDF
    The Advanced Solid-state Array Spectrometer (ASAS) is a pointable imaging spectrometer which uses a solid-state array to acquire imagery of terrestrial targets in 29 spectral bands from .4 to .8 microns. Performance and calibration of the instrument are described. The ASAS data sets obtained in 1990 provide a unique look at forest canopies from two different forest regions of the North America continent under varying temporal, spectral, and bidirectional conditions. These data sets will be used to study such parameters as the albedo of forest canopies, the dynamics of scene radiation due to factors such as canopy architecture, moisture stress, leaf chemistry, topography, and understory composition

    The Role of Organizational and Interorganizational Factors on Planned Adoption of Electronic Commerce

    Get PDF
    Internet technologies, especially the World Wide Web, are predicted to lead to changes in the transfer of information between trading partners. This paper focuses on identifying organizational and interorganizational factors which will impact the planned adoption of electronic commerce. The interorganizational system will become successfulonly if those factors which are found to have an impact on the adoption of the innovation are handled effectively by the system. Prior to the planned adoption these factors need to be evaluated and managed to ensure a successful adoptio

    Massive Lyman Break Galaxies at z~3 in the Spitzer Extragalactic First Look Survey

    Get PDF
    We investigate the properties of 1088 Lyman Break Galaxies (LBGs) at z~3 selected from a ~2.63deg2subregionoftheFirstLookSurveyfieldusingthegroundbasedmulticolordataandtheSpitzerSpaceTelescopemidinfrareddataat38and24um.Withthewideareaandthebroadwavelengthcoverage,wesamplealargenumberofrareubanddropoutswhicharemassive(M>1011Msun),allowingustoperformastatisticalanalysisofthesesubsetsofLBGsthathavenotbeenstudiedindetail.Opticallybright(R(AB)<24.5mag)LBGsdetectedinmidinfrared(S3.6um>6uJy)resideatthemostmassiveanddustyendoftheLBGpopulation,withrelativelyhighandtight deg2 sub-region of the First Look Survey field using the ground-based multi-color data and the Spitzer Space Telescope mid-infrared data at 3--8 and 24 um. With the wide area and the broad wavelength coverage, we sample a large number of ``rare'' u-band dropouts which are massive (M* > 10^11 Msun), allowing us to perform a statistical analysis of these subsets of LBGs that have not been studied in detail. Optically bright (R(AB) < 24.5 mag) LBGs detected in mid-infrared (S_{3.6um} > 6 uJy) reside at the most massive and dusty end of the LBG population, with relatively high and tight M/L$ in rest-frame near-infrared. Most infrared-luminous LBGs (S_{24um} > 100 uJy) are dusty star-forming galaxies with star formation rates of 100--1000 Msun/yr, total infrared luminosity of > 10^12 Lsun. By constructing the UV luminosity function of massive LBGs, we estimate that the lower limit for the star formation rate density from LBGs more massive than 10^11 Msun at z~3 is > 3.3 x 10^-3 Msun/yr/Mpc^3, showing for the first time that the UV-bright population of massive galaxies alone contributes significantly to the global star formation rate density at z~3. When combined with the star formation rate densities at z < 2, our result reveals a steady increase in the contribution of massive galaxies to the global star formation from z=0 to z=3, providing strong support to the downsizing of galaxy formation.Comment: 15 pages, 13 figures. Accepted for publication in Ap

    There and (slowly) back again: Entropy-driven hysteresis in a model of DNA overstretching

    Full text link
    When pulled along its axis, double-stranded DNA elongates abruptly at a force of about 65 pN. Two physical pictures have been developed to describe this overstretched state. The first proposes that strong forces induce a phase transition to a molten state consisting of unhybridized single strands. The second picture instead introduces an elongated hybridized phase, called S-DNA, structurally and thermodynamically distinct from standard B-DNA. Little thermodynamic evidence exists to discriminate directly between these competing pictures. Here we show that within a microscopic model of DNA we can distinguish between the dynamics associated with each. In experiment, considerable hysteresis in a cycle of stretching and shortening develops as temperature is increased. Since there are few possible causes of hysteresis in a system whose extent is appreciable in only one dimension, such behavior offers a discriminating test of the two pictures of overstretching. Most experiments are performed upon nicked DNA, permitting the detachment (`unpeeling') of strands. We show that the long-wavelength progression of the unpeeled front generates hysteresis, the character of which agrees with experiment only if we assume the existence of S-DNA. We also show that internal melting (distinct from unpeeling) can generate hysteresis, the degree of which is strongly dependent upon the nonextensive loop entropy of single-stranded DNA.Comment: 18 pages, 10 figure

    Carbon nanotube-based sensor and method for detection of crack growth in a structure

    Get PDF
    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure

    Genetic signal maximization using environmental regression

    Get PDF
    Joint analyses of correlated phenotypes in genetic epidemiology studies are common. However, these analyses primarily focus on genetic correlation between traits and do not take into account environmental correlation. We describe a method that optimizes the genetic signal by accounting for stochastic environmental noise through joint analysis of a discrete trait and a correlated quantitative marker. We conducted bivariate analyses where heritability and the environmental correlation between the discrete and quantitative traits were calculated using Genetic Analysis Workshop 17 (GAW17) family data. The resulting inverse value of the environmental correlation between these traits was then used to determine a new β coefficient for each quantitative trait and was constrained in a univariate model. We conducted genetic association tests on 7,087 nonsynonymous SNPs in three GAW17 family replicates for Affected status with the β coefficient fixed for three quantitative phenotypes and compared these to an association model where the β coefficient was allowed to vary. Bivariate environmental correlations were 0.64 (± 0.09) for Q1, 0.798 (± 0.076) for Q2, and −0.169 (± 0.18) for Q4. Heritability of Affected status improved in each univariate model where a constrained β coefficient was used to account for stochastic environmental effects. No genome-wide significant associations were identified for either method but we demonstrated that constraining β for covariates slightly improved the genetic signal for Affected status. This environmental regression approach allows for increased heritability when the β coefficient for a highly correlated quantitative covariate is constrained and increases the genetic signal for the discrete trait

    Lofar Low-Band Antenna Observations of the 3C 295 and Bootes Fields: Source Counts and Ultra-Steep Spectrum Sources

    Get PDF
    We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam-1, making them the deepest images ever obtained in this frequency range. In t

    The first successful application of Optically Stimulated Luminescence Dating to a colonial era (<0.25ka) archaeological site in Australia

    Get PDF
    While exploration of Australian post-colonial (≤0.25 ka) OSL dating is well established in a range of natural sedimentary contexts (e.g. fluvial, aeolian, coastal), to date there have been no successful examples of the technique applied to archaeological sediments of this era. Here we present the results of a multi-phase compliance-based archaeological excavations of a new bridge crossing the Hawkesbury-Nepean River (northwest Sydney). These works identified a Last Glacial Maximum (LGM) aeolian deposit through which a colonial era drainage system had been excavated. Historical documents reveal the construction of the system occurred between 1814 and 1816 CE. An opportunistic range-finding Optically Stimulated Luminescence (OSL) sample was obtained from anthropogenic trench backfill – composed of reworked LGM deposits – immediately above the drainage system. Minimum and Finite Mixture age models of single grain quartz OSL provided a date of 1826 CE (1806-1846 CE), in close agreement with the documented age of construction. These findings provide the first evidence of a colonial structure reliably dated using OSL, and demonstrate the feasibility of wider deployment of OSL dating to other archaeological sites of the recent era (≤0.25 ka). We propose that such environments associated with large volumes of sand-rich backfill, in particular, likely heighten OSL dating success. We propose that well-documented historical archaeological sites in Australia also have the potential to provide a robust testing ground for further evaluating the accuracy of OSL dating in a range of young archaeological sedimentary contexts, potentially to sub-decadal levels

    Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    Get PDF
    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research

    Middle and Late Pleistocene environmental history of the Marsworth area, south-central England

    Get PDF
    To elucidate the Middle and Late Pleistocene environmental history of south-central England, we report the stratigraphy, sedimentology, palaeoecology and geochronology of some deposits near the foot of the Chiltern Hills scarp at Marsworth, Buckinghamshire. The Marsworth site is important because its sedimentary sequences contain a rich record of warm stages and cold stages, and it lies close to the Anglian glacial limit. Critical to its history are the origin and age of a brown pebbly silty clay (diamicton) previously interpreted as weathered till. The deposits described infill a river channel incised into chalk bedrock. They comprise clayey, silty and gravelly sediments, many containing locally derived chalk and some with molluscan, ostracod and vertebrate remains. Most of the deposits are readily attributed to periglacial and fluvial processes, and some are dated by optically stimulated luminescence to Marine Isotope Stage (MIS) 6. Although our sedimentological data do not discriminate between a glacial or periglacial interpretation of the diamicton, amino-acid dating of three molluscan taxa from beneath it indicates that it is younger than MIS 9 and older than MIS 5e. This makes a glacial interpretation unlikely, and we interpret the diamicton as a periglacial slope deposit. The Pleistocene history reconstructed for Marsworth identifies four key elements: (1) Anglian glaciation during MIS 12 closely approached Marsworth, introducing far-travelled pebbles such as Rhaxella chert and possibly some fine sand minerals into the area. (2) Interglacial environments inferred from fluvial sediments during MIS 7 varied from fully interglacial conditions during sub-stages 7e and 7c, cool temperate conditions during sub-stage 7b or 7a, temperate conditions similar to those today in central England towards the end of the interglacial, and cool temperate conditions during sub-stage 7a. (3) Periglacial activity during MIS 6 involved thermal contraction cracking, permafrost development, fracturing of chalk bedrock, fluvial activity, slopewash, mass movement and deposition of loess and coversand. (4) Fully interglacial conditions during sub-stage 5e led to renewed fluvial activity, soil formation and acidic weathering
    corecore