94 research outputs found

    The Control of Dynamical Systems - Recovering Order from Chaos -

    Get PDF
    Following a brief historical introduction of the notions of chaos in dynamical systems, we will present recent developments that attempt to profit from the rich structure and complexity of the chaotic dynamics. In particular, we will demonstrate the ability to control chaos in realistic complex environments. Several applications will serve to illustrate the theory and to highlight its advantages and weaknesses. The presentation will end with a survey of possible generalizations and extensions of the basic formalism as well as a discussion of applications outside the field of the physical sciences. Future research avenues in this rapidly growing field will also be addressed.Comment: 18 pages, 9 figures. Invited Talk at the XXIth International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC), July 22-27, 1999 (Sendai, Japan

    Protective Antiviral Immunity Conferred by a Nonintegrative Lentiviral Vector-Based Vaccine

    Get PDF
    Lentiviral vectors are under intense scrutiny as unique candidate viral vector vaccines against tumor and aggressive pathogens because of their ability to initiate potent and durable specific immune responses. Strategies that alleviate safety concerns will facilitate the clinical developments involving lentiviral vectors. In this respect, the development of integration deficient lentiviral vectors circumvents the safety concerns relative to insertional mutagenesis and might pave the way for clinical applications in which gene transfer is targeted to non-dividing cells. We thus evaluated the potential use of nonintegrative lentiviral vectors as vaccination tools since the main targeted cell in vaccination procedures is the non-dividing dendritic cell (DC). In this study, we demonstrated that a single administration of nonintegrative vectors encoding a secreted form of the envelope of a virulent strain of West Nile Virus (WNV) induces a robust B cell response. Remarkably, nonintegrative lentiviral vectors fully protected mice from a challenge with a lethal dose of WNV and a single immunization was sufficient to induce early and long-lasting protective immunity. Thus, nonintegrative lentiviral vectors might represent a safe and efficacious vaccination platform for the development of prophylactic vaccines against infectious agents

    Dermal-Type Macrophages Expressing CD209/DC-SIGN Show Inherent Resistance to Dengue Virus Growth

    Get PDF
    Mosquito-transmitted pathogens are a major challenge to humans due to ever-increasing distribution of the vector worldwide. Dengue virus causes morbidity and mortality, and no anti-viral treatment or vaccine are currently available. The virus is injected into the skin when an infected mosquito probes for blood. Among the skin immunocytes, dendritic cells and macrophages are equipped with pathogen-sensing receptors. Our work has shown that dermal macrophages bind the dengue virus envelope protein. We demonstrate that monocyte-derived dermal macrophages are resistant to infection and present evidence that this is due to sequestration of the virus into fusion-incompetent intracellular vesicles. This identifies skin macrophages as the first innate immune cell potentially capable of protecting the human host from infection by dengue virus shortly after a mosquito bite. These findings have important implications for better understanding the early infection events of dengue virus and of other skin-penetrating pathogens

    Insect oral secretions suppress wound-induced responses in Arabidopsis

    Get PDF
    The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences

    The Mixed-Lineage Kinase DLK Is a Key Regulator of 3T3-L1 Adipocyte Differentiation

    Get PDF
    The mixed-lineage kinase (MLK) family member DLK has been proposed to serve as a regulator of differentiation in various cell types; however, its role in adipogenesis has not been investigated. In this study, we used the 3T3-L1 preadipocyte cell line as a model to examine the function of DLK in adipocyte differentiation.Immunoblot analyses and kinase assays performed on 3T3-L1 cells showed that the expression and activity of DLK substantially increase as differentiation occurs. Interestingly, DLK appears crucial for differentiation since its depletion by RNA interference impairs lipid accumulation as well as expression of the master regulators of adipogenesis C/EBPalpha and PPARgamma2 at both the mRNA and protein levels. In contrast, neither the expression nor the DNA binding activity of C/EBPbeta, an activator for C/EBPalpha and PPARgamma, is affected by DLK loss.Taken together, these results suggest that DLK is important for expression of mature adipocyte markers and that its action most likely takes place via regulation of C/EBPbeta transcriptional activity and/or initiation of C/EBPalpha and PPARgamma2 gene transcription

    Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus

    Get PDF
    Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist
    corecore