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Abstract. Following a brief historical introduction of the notions of chaos in dynam-
ical systems, we will present recent developments that attempt to profit from the rich
structure and complexity of the chaotic dynamics. In particular, we will demonstrate
the ability to control chaos in realistic complex environments. Several applications
will serve to illustrate the theory and to highlight its advantages and weaknesses. The
presentation will end with a survey of possible generalizations and extensions of the
basic formalism as well as a discussion of applications outside the field of the physical
sciences. Future research avenues in this rapidly growing field will also be addressed.

INTRODUCTION

In his 1985 Gifford Lectures, Freeman Dyson expressed his opinion on the matter of chaos.
In his subsequently published words [1], the chapter entitled “Engineers’ Dreams” contains the
following statement:

A chaotic motion is generally neither predictable nor controllable. It is unpre-
dictable because a small disturbance will produce exponentially growing perturbation
of the motion. It is uncontrollable because small disturbances lead only to other
chaotic motions and not to any stable and predictable alternative. Von Neumann’s
mistake was to imagine that every unstable motion could be nudged into a stable
motion by small pushes and pulls applied at the right places.

As one can see, the assertion was also meant as an answer to comments made by von Neumann
in the early 1950s and who obviously held a less pessimistic point of view. Dyson’s position
represents well the traditional wisdom until 1990 ...

In order to appreciate why the juxtaposition of the two words chaos and control is so counter-
intuitive and why Dyson’s statement was so representative and sensible, an operational definition
of chaos will be helpful. In our exposition, the word chaos has a technical and precise meaning to
be distinguished from its greek origin where it designated “the primeval emptiness of the universe
before things came into being of the abyss of Tartarus, the underworld” . A universal definition
is not available, but most researchers would agree that deterministic chaos could be described as
follows:
Chaos is a long-term aperiodic behaviour of a dynamical system that possesses the property of

sensitivity to initial conditions.

– long-term aperiodic behaviour means that the time evolution of the system does not tend



towards a stationary or periodic state, i.e. regularity of the motion is absent.
– dynamical system describes a process whose future behaviour is strictly determined by its past
state, i.e. determinism is present and the source of the irregularity is inherent and not to be found
in a stochastic component.
– sensitivity to initial conditions implies that a very small deviation in the initial conditions
is sufficient to create large deviations in the future states (the so-called “butterfly effect”), i.e.
despite the presence of determinism, practical long-term predictability is lost.

This is the type of motion that Dyson had in mind. It is not new of course and it is clear that
Maxwell and Boltzmann, the founders of statistical physics, were acutely aware of the property
of sensitivity to initial conditions and its consequences. Not before Poincaré [2] however, could
one ascertain the existence of this property in a system with few degrees of freedom, namely
the reduced 3-body problem. In the continuing history of nonlinear dynamical systems, the first
evidence of physical chaos is associated with the name of Edward Lorenz [3], whose 1963 discovery
of the first strange attractor in a simplified meteorological model containing only 3 state variables
has led to a remarkable explosion in the study of chaos and its properties. It was not until 1990
however that Ott, Grebogi and Yorke (OGY) [4] addressed the question of control of chaos and
described, very much in the spirit of von Neumann, the theoretical steps necessary to achieve this
goal. This work was rapidly followed by experimental verification [5]: von Neumann’s dream had
become reality.

This Progress Report will describe some practical implementations for the recovery of order
from chaos. The theoretical foundations of the methods will be first explained for 1D and 2D sys-
tems and then demonstrated with some recent calculations taken from mathematics and physics.
Our conclusions and a glimpse at future applications and extensions make the last part of the
presentation. Lack of space precludes completeness, and the interested reader may wish to consult
the special 1997 Decembre issue of Chaos for further information1.

THE CONTROL STRATEGY

All stable processes, we shall predict.

All unstable processes, we shall control.

John von Neumann, circa 1950

In this Section, we show how the richness, the complexity and the sensitivity of chaotic dy-
namics can be used to select and stabilize at will, with small programmed perturbations, an
otherwise unstable state of the natural dynamics. The goal is to achieve this feat without altering
appreciably the original system. It is precisely the properties that differentiate a chaotic motion
from an irregular or unstable behaviour that are the solution to the control task. The important
ingredients are:
– unstable periodic orbits (UPO) are typically dense in the chaotic attractor of dissipative systems
or in the stochastic web of conservative systems, i.e. there are practically an infinity of unstable
states to choose from.
– chaotic motion is ergodic, meaning that a chaotic trajectory will revisit infinitely often the
neighbourhood of any point within the available phase space.
– chaotic dynamics is sensitive to initial conditions, implying that small perturbations will natu-
rally induce large effects.

To go beyond qualitative description, we establish some working conditions:

1) As an indication of the rapid growth of the literature, approximately 1500 articles have been
published on the subject of Control and Synchronization between 1990-1999.
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1. we suppose that the dynamics can be represented by a d-dimensional nonlinear map (either
given explicitly or reconstructed from the observations)

xn+1 = F(xn, p) (1)

where p is an accessible system parameter, the control parameter.

2. there exists one or more specific UPOs for a given nominal value p0 of the parameter, defined
by

{x(i, p0) : x(i, p0) = F(m)(x(i, p0), p0) , ∀ i = 1,m} (2)

for an orbit of period m, around which one wishes to stabilize the dynamics.

3. control is activated only when points of the trajectory {xn} fall in a small neighbourhood
of the UPOs, usually taken to be a ball Bδ of radius δ around {x(i, p0)} ,

|xn − x(i, p0)| ≤ δ for some i = 1,m , (3)

hereafter referred to as the control or δ−neighbourhood.

4. we restrict the parameter variations δp, necessary to achieve control, to a maximum small
perturbation

|δp| ≤ |δpmax| ≪ |p| (4)

defining the control range.

5. since the position of a periodic orbit is a function of p, and we assume that the local dynamics
does not vary much within |δp|, a linear representation of the dynamics is possible.

Obviously, the control range and neighbourhood are not independent and experience shows that
a judicious choice is to take them of the same order of magnitude.

1D Control

In a 1D system where the nonlinear map is given explicitly by

xn+1 = F (xn, p) , (5)

and where a target UPO of period m, i.e. {x(i, p0)}, exists at nominal value p0 of the control
parameter, the perturbations necessary to stabilize the orbit can be calculated directly. Indeed,
assume that at the n-th iteration, xn comes in Bδ of the i-th component of the target UPO, i.e.
|xn−x(i, p0)| ≤ δ, then equation (5) can easily be linearized around x(i, p0) and p = p0 such that

xn+1 − x(i+ 1, p0) ∼ Ui [xn − x(i, p0)] + Vi [pn − p0] ≡ Ui δxn,i + Vi δpn (6)

where U is the Jacobian of the map and V expresses the parametric variation of the map

U = DxF (x, p) =
∂

∂x
F (x, p) V = DpF (x, p) =

∂

∂p
F (x, p) . (7)

The notation Ui and Vi indicates that the partial derivatives are evaluated at [x = x(i, p0), p = p0].
To obtain an expression for δpn, one imposes the control criterion (not unique) that equation (6),
taken as a strict equality, should be equal to zero, namely that

3



xn+1 − x(i + 1, p0) = 0 . (8)

(control criterion 1D)
Solving for δpn, equation (6) leads immediately to

δpn = −
Ui

Vi
δxn,i . (9)

In order to complete the procedure, one should make sure that |δpn| just obtained is ≤ δpmax (we
will always take δpmax > 0 ). If it is so, pn = p0 + δpn for the next iteration; if not, one could set
pn = p0 and wait until the trajectory reenters Bδ. We have found that a more robust choice is to
apply the corrections during the control stage according to the prescription

δpn −→ δpmax tanh(δpn/δpmax) for |δpn| > δpmax . (10)

This is a minor point however since typically δpn decreases rapidly after the first few iterations
as we are getting ever closer to the target orbit (δpn ∝ δxn).

2D Control

Stabilization in higher dimensions is qualitatively different from the 1D case since phase space
is endowed with a much richer structure. For simplicity, we will confine our discussion to two
dimensions. In 2D, the generic local neighbourhood of a UPO is equipped with a stable and
unstable manifold. A chaotic trajectory entering the neighbourhood will move toward the UPO
along the stable direction and escape along the unstable one. This is the “saddle dynamics”
illustrated in Figure (1).

OGY [4] realized that a possible solution of controlling chaos could be obtained by locally
displacing the manifolds such that the component of the motion along the unstable direction
could be eliminated (at least to first order) such that subsequent evolution will naturally lead
the orbit to the unstable point along the stable direction. This idea is geometrically presented
in Figure (1) for the situation of an unstable fixed point denoted xF (p0), much like the task of
bringing a ball bearing to rest on a saddle. The remaining part of this subsection is devoted to

FIGURE 1. Local Geometry of Control: (left) 2D “saddle dynamics” and (right) lineariza-

tion of the stable and unstable manifolds.
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the mathematical translation of the applications of “small pushes and pulls applied at the right
places”.

Starting from the 2D nonlinear map

xn+1 = F(xn, p) (11)

with xn ∈ R2 and p ∈ R, one traces the steps to achieve control through the following algorithm.

1. locate a UPO of period m for the nominal value of the parameter p0

x(1, p0) → x(2, p0) → · · ·x(m, p0) → x(m+ 1, p0) = x(1, p0) . (12)

2. linearize the dynamics in the δ-neighbourhood of x(i, p0) :

xn+1 − x(i + 1, p0) ∼ Ui [xn − x(i, p0)] +Vi δpn (13)

where U is the 2× 2 Jacobian matrix and V is a 2× 1 parametric variation vector

U ≡ Dx F(x, p) and V ≡ Dp F(x, p) (14)

with the partial derivatives evaluated at [x = x(i, p0), p = p0].

3. characterize the local dynamics by the stable es,i and the unstable eu,i directions.

4. construct the contravariant vectors defined by

fu,i · eu,i = fs,i · es,i = 1 fu,i · es,i = fs,i · eu,i = 0 . (15)

5. stabilize the orbit by demanding that it falls, on the next iteration, on the stable direction,
i.e.

fu,i+1 · [xn+1 − x(i + 1, p0)] = 0 . (16)

(control criterion OGY)
Therefore, according to step 2, we obtain the relation

fu,i+1 · {Ui [xn − x(i, p0)] +Vi δpn} = 0 . (17)

6. calculate the perturbation necessary to satisfy equation (17)

δpn = −
fu,i+1 · {Ui [xn − x(i, p0)]}

fu,i+1 ·Vi
(18)

and apply only if |δpn| < δpmax otherwise set e.g. δpn = 0 or use equation (10).

In summary, the stabilization procedure can be divided in three separate stages: the learning

stage, where one identifies the desired UPOs, extracts the Jacobian matrices, and calculates the
corresponding stable and unstable directions es,i , eu,i to construct the contravariant vectors fu,i ;
the transient stage, where, after randomly choosing an initial condition, the system is let to evolve
freely at the nominal parameter value p0 until, at the control stage, once the chaotic trajectory has
entered the prescribed δ-neighbourhood, the control is attempted by means of small parameter
perturbations.
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Alternative Control Algorithms

The algorithm just described is dynamically optimal in that it uses a control criterion and
perturbations that involve the complete local structure of the system’s dynamics. From a practical
(experimental) point of view, it is also most demanding considering that the underlying dynamical
law is often not even known a priori. It requires the determination of the Jacobian matrices and
the parametric variation of the map along the UPOs and the corresponding stable and unstable
directions. Several modifications of the original method have been proposed and we now present
some of them with an emphasis towards algorithms that are simpler and in some instances more
practicable.

If instead of equation (13), one writes the linearization as

xn+1 − x(i + 1, pn) ∼ Ui [xn − x(i, pn)] (19)

where the dependence of Ui on p has been ignored, and one introduces the parametric variation
of the periodic points as

gi ≡
d

dp
x(i, p)

∣

∣

∣

∣

p=p0

∼
x(i, p0 + δp)− x(i, p0)

δp
(20)

or equivalently,

x(i, p0 + δp) ∼ x(i, p0) + gi δp , (21)

one arrives, under the criterion (16), to the perturbations

δpn = −
fu,i+1 · {Ui [xn − x(i, p0)]}

fu,i+1 · (gi+1 −Ui gi)
. (22)

The expression (22) has the advantage that the variables gi can easily be obtained from observa-
tions of the shift of the periodic points under small parameter change.

One further simplification arises if it is sufficient to intervene on the dynamics only once per
period. The modifications to the formula are straightforward. Equation (19) becomes

xn+m − xF,i(pn) ∼ U
(m)
i [xn − xF,i(pn)] (23)

where the notation is chosen to emphasize that xF,i(p) = x(i, p) is a fixed point of F(m) (the

m times application of the map F). Furthermore, the Jacobian matrix U
(m)
i = DxF

(m)(x, p),
evaluated at [xF,i(p0), p0], can be expanded in terms of its eigenvectors (the stable and unstable
manifolds) and eigenvalues as λu,i eu,ifu,i + λs,i es,ifs,i to modify (22) to

δpn = −
λu,i

(1− λu,i)

fu,i · [xn − xF,i(p0)]

fu,i · gi
. (24)

Until now the control criterion has not been modified, but in situations where the stable and
unstable manifolds may be difficult to obtain (e.g. in high dimensions) or for the sake of simplicity,
one might choose to minimize the deviation from the target orbit instead of projecting onto the
stable manifold, i.e. we demand that

||xn+m − xF,i|| = minimum , (25)

(control criterion MED)
where an estimate of xn+m is given by equations (23) and (21), namely
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xn+m ∼ xF,i(p0) +U
(m)
i [xn − xF,i(p0)] + (gi −U

(m)
i gi) δpn . (26)

The solution of the minimization (25) is then

δpn = −
(gi −U

(m)
i gi) ·

{

U
(m)
i [xn − xF,i(p0)]

}

||(gi −U
(m)
i gi)||2

. (27)

This technique was first introduced in [6] and goes by the name of minimal expected deviation
(MED) method2.

The perturbations δpn transform the original autonomous systems to nonautonomous ones.
One could therefore consider a formulation extending phase space by one dimension with pn as
the new dynamical variable. Alternatively, as was first realized in [7], one could account explicitly
for the pn dependence by introducing in the mapping itself the past history of the perturbations,
namely

xn+1 = Fc(xn, pn, pn−1) . (28)

We restrict ourselves to the last two perturbations. The sub-index on Fc is to remind us that the
mapping differs from the original one and is only identical to it when pn = pn−1 = p0. In analogy
to equation (26), one can write

xn+m ∼ xF,i(p0, p0) +U
(m)
i [xn − xF,i(p0, p0)]

+(gu,i −U
(m)
i gu,i) δpn + (gb,i −U

(m)
i gb,i) δpn−1 . (29)

with

gu =
d

dp
xF (p, p

′)

∣

∣

∣

∣

p=p′=p0

gb =
d

dp′
xF (p, p

′)

∣

∣

∣

∣

p=p′=p0

. (30)

To complete the modification, a control condition must be imposed and a reasonable choice is

[xn+2m − xF,i(p0, p0)] = 0 and δpn+1 = 0 . (31)

(control criterion RPF)
The conditions (31) are sufficient to solve the linearized equation (29) for δpn as

δpn = −
X

(m)
i · {U

(m)
i U

(m)
i [xn − xF,i(p0, p0)]}

||X
(m)
i ||2

−
X

(m)
i · (U

(m)
i W

(m)
i )

||X
(m)
i ||2

δpn−1 (32)

with X
(m)
i = U

(m)
i V

(m)
i +W

(m)
i , V

(m)
i = gu,i −U

(m)
i gu,i and W

(m)
i = gb,i − U

(m)
i gb,i. Our

derivation is somewhat different from [8] and , in view of the numerous parameters to determine,
it should be taken as a serious alternative only for 1D (or quasi 1D) systems. In the latter case,
the method has a simple geometrical interpretation as illustrated in the right panel of Figure
(2) for an unstable fixed point xF (p0): U is the local slope of the original map, guδp and gbδp
correspond to the shifts of the fixed point to positions xF,u(p0 + δp, p0) ∼ xF (p0) + guδp and
xF,b(p0, p0 + δp) ∼ xF (p0) + gbδp respectively, whereas V δp denotes the map displacement from
Fc(x, p0, p0) ≡ F (x, p0) → Fu(x, p0 + δp, p0) and Wδp from F (x, p0) → Fb(x, p0, p0 + δp). These
parameters are readily obtained from the observations as was first demonstrated by [8] who gave
the algorithm the name of recursive proportional feedback (RPF).

2) For conciseness, we only give the FIRST reference for each technique, although the methods
are continuously being improved and modified: this applies to the entire report.
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FIGURE 2. Alternative Local Geometries of Control: (left) the Occasional Proportional

Feedback (OPF) method and (right) the Recursive Proportional Feedback (RPF) method.

Our last modification, which we only quote for 1D systems where it is most likely to be used,
consists of ignoring in the RPF formula the dependence on pn−1 which amounts to setting W = 0
in the previous equations, to obtain

δpn = −
U

(g − U g)
[xn − xF,i(p0)] . (33)

One should not be deceived by the apparent simplicity of equation (33). In its regime of applica-
bility, it can be enormously successful as we will see shortly and as Hunt [9] first demonstrated.
Its geometrical interpretation is shown in the left panel of Figure (2) where it amounts to choose
a perturbation such that upon the next iteration, xn is mapped onto the target fixed point. This
occasional proportional feedback (OPF), as it was called originally, is eminently suited for experi-
mental control since it requires feedback signals proportional to the deviations to the target orbit
and two parameters U and g readily available. Even more, if one is bold enough, one might just
as well adjust the proportionality constant until control is established.

MATHEMATICAL AND PHYSICAL APPLICATIONS

We have selected five examples of increasing complexity and novelty. The first three correspond
to dissipative systems confined to a chaotic attractor, whereas the last two are conservative
Hamiltonian systems where the attractor is replaced by bounded regions of phase space where
the dynamics is chaotic.

We will apply the perturbations only once per period for all cases except the last. Save for the
two discrete maps, ALL the relevant control informations are obtained numerically in an effort
to simulate more closely an experimental setting. Reliable methods (see e.g. [10]) exist to locate
the positions of the UPOs and we will assume thereafter that the locations are known prior to
the control session. The numerical construction of the Jacobian matrices from time series is often
a subtle task and is beyond the scope of this article. The reader is referred to [11] for technical
details.

8



1D Logistic Map

Our first example is the logistic map

xn+1 = r xn(1− xn) (34)

which is known to have a broad range of parameter values r ∈ [∼ 3.57, 4.0] where chaotic motion
can be observed. The variables entering the control signals are simply

U = r(1 − 2x) and V = x(1 − x) (35)

and for a given UPO, {x(i)}, the perturbations are

δpn = r0
2x(i)− 1

x(i)(1− x(i))
[xn − x(i)] (36)

for |xn − x(i)| ≤ δ ≪ 1.

FIGURE 3. Logistic Map: The left panel shows the bifurcation diagram as a function of the

parameter r. The right panel illustrates the successive control of UPOs of period 1, 2, 4, 5, 7 for

r0 = 3.8 (indicated by the arrow in the left panel). The control is held for 2 000 iterates with

δ = 10−4 and δrmax = 10−3 r0.

The left panel of Figure (3) shows the asymptotic behaviour of the orbits for different values of
r. We have chosen the nominal value, r0 = 3.8, and control settings of δ = 10−4, δrmax = 10−3 r0,
and requested from our controller to successively stabilize periods m = 1, 2, 4, 5, 7 and hold control
for 2 000 iterates each. The right panel of Figure (3) shows the flexibility of the procedure letting
ergodicity bring the trajectory near the next target orbits after a successful control sequence.

A few remarks are in order. First, note that the control process does not create the UPOs,
they exist already in the natural (free) dynamics and build, so to speak, the lattice upon which
the chaotic trajectory wanders. The control mechanism simply picks them out of the background.
Second, the transients in between controlled periods are of varying lengths and could be consid-
erably reduced by optimizing the control variables and/or by steering the chaotic orbit to the
UPOs by a technique called targeting [13] .
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2D Dissipative Hénon Map

FIGURE 4. Hénon Map: The left panel shows the attractor with a number of embedded

UPOs. The right panel shows the successive OGY control of UPOs of period 2, 4, 1, 8 for

a0 = 1.4, b0 = 0.3. The control is held for 10 000 iterates with δ = 5×10−3 and δamax = 10−2 a0.

The Hénon map [14] has been a paradigmic example in nonlinear dynamics ever since its
inception. It has the form

xn+1 = 1− a x2
n + yn

yn+1 = b xn

(37)

and a Jacobian matrix given by

U =

(

−2ax 1
b 0

)

(38)

with determinant (the Jacobian) equal to b. It is dissipative for |b| < 1 and possesses a non
trivial strange attractor for various combinations of the parameters a, |b| < 1. For our purpose,
it serves as a benchmark, since the complete OGY strategy (eqns (18) or (22) or (24) ) can
be performed (semi-) analytically and compared with other implementations. For example, the

Jacobian matrices U
(m)
i are the product of m individual Jacobian matrices along the periodic

orbit, i.e. Ui+m−1 Ui+m−2 . . . Ui+1 Ui, whose eigenvectors can be written down analytically.
Our experiment (Fig. 4) shows the attractor for a0 = 1.4, b0 = 0.3 with the locations of

embedded UPOs of periods 1, 2, 4, 8. The OGY control algorithm was used and the perturbations
applied to the parameter a0. The right panel of Figure (4) shows the values of the x variable
for a scenario involving the successive stabilizations of period 2, 4, 1, and 8. The target orbit
is changed once a UPO has been controlled for 10 000 iterates. The control region was set to
δ = 5 × 10−3 and the maximum perturbation allowed was δamax = 10−2 a0. Under the same
operational conditions, the MED minimization gave equally satisfactory results.
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3D Rössler Flow

FIGURE 5. Rössler Attractor with an embedded UPO of period 3 in darker line. The flow

parameters are a0 = b0 = 0.2 and c0 = 5.7 . Also indicated is the plane x = 2 where dynamical

informations are gathered.

Until now, our examples have described discrete dynamics and our formalism is also derived for
maps. We now show how to appropriately discretize a flow to achieve control with the methods
derived thus far. The Rössler system [15] consists of 3 coupled differential equations

ẋ = −y − z

ẏ = x+ a y (39)

ż = x z − c z + b

and a chaotic orbit is bounded to a funnel-like attractor (Fig. 5: a0 = b0 = 0.2, c0 = 5.7) where
the motion is mostly in the x− y plane with rapid excursions in the z direction.

The last observation leads us to one possible discretization: one can register intersections of the
flow with a plane x = cte (the Poincaré section) and accumulate the pairs (yn, zn) from which one
could subsequently infer a map (the Poincaré map), (yn+1, zn+1) = FP ((yn, zn)). For uniqueness,
one must choose directed intersections by monitoring ẋ on the Poincaré section (see Fig. 5).

The intersections with the Poincaré section (x = 2, ẋ > 0) is represented in the lower left
panel of Figure (6). One notices little variation in the z component and our quasi 1D control
methods should be appropriate. In the same panel, one has indicated the positions of 3 UPOs to
be stabilized. The OPF control of the y component is shown in the lower right panel of Figure
(6) resulting in 3 continuous trajectories (upper panel) embedded in the attractor (compare with
Fig. 5). We believe that this success indicates just how robust this type of linear feedback
is. Remember that we intervene in the dynamics only on the Poincaré section with a small
perturbation (here < 1% of c0) at every m intersections.
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FIGURE 6. Rössler Flow: (upper panel) 3 stabilized continuous trajectories embedded in the

attractor of Fig. 5; (lower left) locations of the UPOs on the Poincaré section x = 2, ẋ > 0; (lower

right) OPF control on the Poincaré section of the y components of the UPOs. Control is held

during 1 500, 1 000, and 500 cycles for period 1, 3, and 4 respectively (1 cycle = 1 complete orbit)

with δ = 10−2 and δcmax = 10−2 c0.

FIGURE 7. Rössler Flow: (left) first return map of successive maxima of the z variable

(Lorenz map) for the attractor of Fig. 5; (right) success of the RPF control and failure of the

OPF method applied to the zmax series with δ = 10−1 and δcmax = 10−2 c0.
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We have performed another experiment on the Rössler flow. It consists of collecting subsequent
maxima zn,max of the z variable along a chaotic trajectory to construct a discretization of the
flow. By plotting zn+1,max versus zn,max, one obtains a (first) return map which is usually called
a Lorenz map after the man who first defined the procedure. Our map is shown on the left of
Figure (7) and it has all the characteristics of a chaotic 1D map. Again this indicates that our
quasi 1D control (RPF or OPF) methods should be applicable. However, according to Figure (5),
this should be rather delicate since the trajectory spends most of its time in the x− y plane. In
other words, the Lorenz map may not be adequate to gather enough dynamical information for
control.

We have therefore used the RPF algorithm where gu and gb are first estimated by alternating
the value of c0 between 5.700 and 5.705. As expected, this creates two new applications Fu and
Fb as clearly seen in the enlarged section of Figure (7). The right side of Figure (7) shows the
RPF stabilization of a period 1 UPO which is maintained for 5 000 iterates before switching to
the OPF algorithm where control is rapidly lost. The refinement incorporated in the RPF method
has served us well and this experiment reveals nicely the limitation of the simplest strategy.

Billiard Dynamics

The study of the frictionless motion of a particle bounded by a closed surface where it is
specularly reflected is known as billiard dynamics and dates back to Birkhoff [16]. It serves to
illustrate the transition from strict regularity (integrability) to chaos (ergodicity) in Hamiltonian
systems [17] and bears important connections to quantum chaos as well [18]. We have chosen to
study the 2D cosine billiard where the surface is parametrized in polar coordinates by the relation

r(φ) = 1 + ǫ cosφ . (40)

The parameter ǫ is a measure of nonintegrability since for ǫ = 0, the curve is a circle and represents
the integrable limit. For all ǫ 6= 0, there are finite regions of phase space that contain chaotic
trajectories. Figure (8) shows on the left the mixed and complex structure of phase space for
ǫ0 = 0.3: the state variables are the incident angles on the surface, {αn} , and the polar angles of

FIGURE 8. Cosine Billiard: (left) mixed chaotic (filled) and regular (open islands) phase

space with embedded UPOs for ǫ0 = 0.3; (middle) MED controlled UPOs of period 4, 5 , 9;

(right) stabilized φ variable of the corresponding UPOs held for 5 000 cycles each with δ = 10−2

(1 cycle = 1 complete orbit).
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the point of impact, {φn}. Since motion is free in between collisions with the surface, our example
belongs to the class of 2D area-preserving mappings, where attractors are absent and replaced
by stochastic bands mixed with regular regions. Within these bands, the motion is ergodic: the
blackened region is produced by one single chaotic orbit. Embedded in this stochastic web, one
observes a number of UPOs whose physical trajectories inside the boundary are shown in the
middle portion of Figure (8). By pulsating the deformation parameter ǫ about its nominal value,
we have achieved control of 3 UPOs of period 4, 5 and 9. We used the MED control algorithm
with a neighbourhood of δ = 10−2. A numerical OGY method gives identical performance.

We mention that the successful control of billiard dynamics may offer a solution to the degra-
dation of finesse in resonant optical microcavities [19]. It has been inferred that the loss of lasing
activities might be associated with ray chaos (geometrical limit) in the optical resonators where
the photons are transported (via chaotic diffusion) to regions of phase space where refractive
escape (Snell’s law) becomes possible. The dielectric droplets making up the resonators behave
very much like 2D billiards and we propose that programmed variations of the asymmetry may
help reduce photon leakage. The viability of the proposal is currently being investigated.

Diamagnetic-Kepler Hamiltonian

Our final example is a continuous, 2 degrees of freedom (4D phase space) Hamiltonian system.
It represents the motion of an electron under the combined influence of a Coulomb and a magnetic
field. It goes under the name, diamagnetic Kepler problem (DKP), and occupies central stage in
classical and quantum chaos research [20]. We use scaled semi-parabolic coordinates and write
the resulting scaled (pseudo-) Hamiltonian as (for angular momentum L = 0)

ĥDK =
1

2
(p2ν + p2µ)− ǫ (ν2 + µ2) +

1

8
ν2µ2(ν2 + µ2) ≡ 2 . (41)

The scaled energy ǫ is related to the physical energy E by ǫ = γ
−2/3
0 E where the parameter

γ0 = B/B0 denotes the strength of the magnetic field relative to the unit B0 ≃ 2.35 105 T . The
classical flow covers a wide range of Hamiltonian dynamics reaching from bound, nearly integrable
behaviour to completely chaotic and unbound motion as the scaled energy is varied [21].

FIGURE 9. Diamagnetic Kepler Problem for scaled energy ǫ0 = −0.2: (left) Poincaré

section µ = 0, µ̇ > 0 showing one chaotic trajectory (filled space) and an OGY controlled period 3

orbit (black dots); (middle) the stabilized ν variable on the Poincaré section; (right) corresponding

3D trajectory. The control settings are δ = 10−3 and δǫmax = 7× 10−2.
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The dimension reduction (from 4D to 2D) and discretization is performed by observing the
dynamics on the Poincaré section defined by µ = 0, µ̇ > 0. The energy shell is then mapped
to an area bounded by the condition p2ν − 2ǫ ν2 = 4 which represents an ellipse in the (ν, pν)
plane. The left panel of Figure (9) shows the collection of points {νn, pν,n} obtained by numerical
integration of the equations of motion for ǫ0 = −0.2. One notices, for this energy, that phase
space has few regular structures: apart from two lobes of regularity, the rest of the ellipse is filled
by the successive piercings of one chaotic trajectory. The three dots indicate the positions of a
UPO of period 3. We have succeeded in stabilizing a number of UPOs for the system, one of
them is displayed with its 3D trajectory in Figure (9). We have employed a complete numerical
implementation of the OGY strategy.

In attempting to bring order to the DKP dynamics, we had to overcome a number of difficulties
not encountered in our previous examples. First, a typical trajectory spends a lot of time away
from the Poincaré section and because of the sensitivity of the dynamics we had to device an
efficient variable step symplectic integrator thereby preserving the geometrical structure of the
Hamiltonian. Second, we had to obtain numerical Jacobians for all members of the UPOs since
it was found to be necessary to intervene at every crossing of the Poincaré section. Third, the
eigenvalues of area-preserving Jacobians are often complex and the stable and unstable manifolds
are no longer along the directions of their eigenvectors. A new method had to be implemented.
Details of the ingenious solutions to these problems can be found in [22].

We should comment that this is the first control of a realistic Hamiltonian system. It still
remains an open question however if manipulations of the magnetic field to induce stabilization
of a classical unstable orbit can be extended to the control, for example, of Rydberg wave packet
dynamics.

Properties of the Control Procedure

The lessons learned through the previous examples and many more not reported here allow us
to draw a list of the properties and advantages of the adopted control ‘philosophy’ and to point
to remaining difficulties.

– no model dynamics is required a priori and only local information is needed;
– computations at each step are minimal;
– gentle touch: the required changes in p0 can be quite small (< 1% );
– multi-purpose flexibility: different periodic orbits can be stabilized for the same system in the
same parameter range;
– control can be achieved even with imprecise measurements of eigenvalues and eigenvectors: the
methods are robust;
– the methods can also be applied to synchronization of several chaotic systems.

At least three complications come to mind when one considers the implementation of chaos
control strategies to the laboratory. The presence of noise, ignored so far, may induce occasional
loss of control or hinder it altogether. The average waiting time to fall in the δ-neighbourhood
may be very (too) long, especially for Hamiltonian systems and a targeting strategy [13] should
complement the control method. Furthermore, the system’s parameters may drift with time and
this nonstationarity should be accounted for by updating the control informations. Tracking [23]
is the name given to this procedure.
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CONCLUSIONS AND FUTURE PERSPECTIVES

CHAOS often breeds life,

When ORDER breeds habit.

Henry Brooks ADAMS

We have presented the basic techniques for controlling chaos and we have reported on some of
our efforts to recover order from chaos. Applications of the control of chaos have been reported
in such diverse areas as aerodynamics, chemical engineering, communications, electronics, fluid
mechanics, laser physics, as well as, biology, finance (not confirmed!), medicine, physiology, epi-
demiology and the list is constantly growing. It is perhaps instructive at this point to quote some
of the earliest experimental successes of the methods to gain an idea of the breadth and diversity
of the systems considered: in solid state devices and condensed matter, magneto-elastic ribbon [5],
spin-wave system [24], electric diode [9]; in fluid mechanics, regularization of chaotic convection
[25]; in chemistry, mechanisms of control of autocatalytic reactions [26]; in laser systems, stabi-
lization of coupled ensemble of lasers [27]; in physiology, cardiac arrhythmia [28], (anti)-control of
epileptic seizures [29].

The last decade has seen much accomplishments and challenges for the future are numerous.
The following items seem to provide a glimpse of things to come: generalization to spatio-temporal
chaos, adaptive control for non-stationary dynamics, effective control in the presence of noise
(dynamical and/or observational), adaptive synchronization of chaos.

However, the greatest challenge will remain for some times the application to complex biological
systems and in particular to brain dynamics [30]. Despite early efforts, euphoria has been replaced
by a healthy skepticism. Indeed, complex natural systems are noisy, contain a strong stochastic
component and not endowed with a behaviour called chaos (at least not in its mathematical
rigorous sense). Yet, one would like to believe that “the controlled chaos of the brain is more
than an accidental by-product of the brain complexity” [31]. The perspective of unifying the
techniques of deterministic chaos control with a statistical stochastic description as a possible
therapeutic strategy against dynamical diseases is surely something to consider.
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14. Hénon, M., Comm. Math. Phys. 50, 69 (1976).
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